Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 46 sách bài tập toán 11 - Cánh diều

Giải bài 8 trang 46 sách bài tập toán 11 - Cánh diều

Giải bài 8 trang 46 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 8 trang 46 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra và kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 8 trang 46 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 2\) và \({u_n} = \sqrt {2 + u_{n - 1}^2} \) với mọi \(n \ge 2\).

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 2\) và \({u_n} = \sqrt {2 + u_{n - 1}^2} \) với mọi \(n \ge 2\). Viết năm số hạng đầu của dãy số và dự đoán công thức của số hạng tổng quát \({u_n}\).

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 46 sách bài tập toán 11 - Cánh diều 1

Thay \(n = 2,{\rm{ 3, 4, 5}}\) vào công thức \({u_n} = \sqrt {2 + u_{n - 1}^2} \) để xác định đủ 5 số hạng đầu của dãy số. Từ 5 số hạng đầu có thể dự đoán công thức của số hạng tổng quát \({u_n}\).

Lời giải chi tiết

Ta có:

\({u_1} = 2 = \sqrt 4 = \sqrt {2\left( {1 + 1} \right)} \)

\({u_2} = \sqrt {2 + u_1^2} = \sqrt {2 + {2^2}} = \sqrt 6 = \sqrt {2\left( {2 + 1} \right)} \)

\({u_3} = \sqrt {2 + u_2^2} = \sqrt {2 + 6} = \sqrt 8 = \sqrt {2\left( {3 + 1} \right)} \)

\({u_4} = \sqrt {2 + u_3^2} = \sqrt {2 + 8} = \sqrt {10} = \sqrt {2\left( {4 + 1} \right)} \)

\({u_5} = \sqrt {2 + u_4^2} = \sqrt {2 + 10} = \sqrt {12} = \sqrt {2\left( {5 + 1} \right)} \)

Như vậy 5 số hạng đầu của dãy số là: \(2\), \(\sqrt 6 \), \(2\sqrt 2 \), \(\sqrt {10} \), \(2\sqrt 3 \).

Từ 5 số hạng đầu, ta có thể dự đoán công thức của số hạng tổng quát \({u_n}\) là:

\({u_n} = \sqrt {2\left( {n + 1} \right)} \)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 8 trang 46 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 8 trang 46 Sách bài tập Toán 11 - Cánh Diều: Hướng dẫn chi tiết và dễ hiểu

Bài 8 trang 46 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học và đại số.

Nội dung bài 8 trang 46 Sách bài tập Toán 11 - Cánh Diều

Bài 8 thường bao gồm các dạng bài tập sau:

  1. Bài tập về phép cộng, trừ vectơ: Yêu cầu tìm vectơ tổng, hiệu của hai vectơ cho trước, hoặc chứng minh đẳng thức vectơ.
  2. Bài tập về tích của một số với vectơ: Yêu cầu tìm vectơ tích, hoặc chứng minh các tính chất liên quan đến tích của một số với vectơ.
  3. Bài tập ứng dụng: Sử dụng kiến thức về vectơ để giải quyết các bài toán hình học, ví dụ như chứng minh ba điểm thẳng hàng, hai đường thẳng song song, hoặc tìm tọa độ của một điểm.

Hướng dẫn giải chi tiết bài 8 trang 46 Sách bài tập Toán 11 - Cánh Diều

Để giải quyết bài 8 trang 46 một cách hiệu quả, bạn cần nắm vững các kiến thức cơ bản sau:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Phép cộng, trừ vectơ: Quy tắc hình bình hành, quy tắc tam giác.
  • Tích của một số với vectơ: Vectơ tích có độ dài bằng tích của số đó với độ dài của vectơ ban đầu, và cùng hướng hoặc ngược hướng tùy thuộc vào dấu của số đó.
  • Các tính chất của phép cộng, trừ vectơ, tích của một số với vectơ.

Dưới đây là hướng dẫn giải chi tiết cho một số bài tập tiêu biểu trong bài 8:

Ví dụ 1: Cho hai vectơ ab. Tìm vectơ a + b.

Giải: Để tìm vectơ a + b, ta sử dụng quy tắc hình bình hành. Vẽ hình bình hành có hai cạnh là ab. Vectơ tổng a + b là đường chéo của hình bình hành đó.

Ví dụ 2: Cho vectơ a = (x1, y1) và số k. Tìm vectơ ka.

Giải: Vectơ ka = (kx1, ky1).

Lưu ý khi giải bài tập về vectơ

  • Luôn vẽ hình để hình dung rõ bài toán.
  • Sử dụng đúng quy tắc và công thức.
  • Kiểm tra lại kết quả sau khi giải xong.

Ứng dụng của kiến thức về vectơ

Kiến thức về vectơ có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau, như vật lý, kỹ thuật, đồ họa máy tính, và khoa học dữ liệu. Việc nắm vững kiến thức về vectơ sẽ giúp bạn giải quyết các bài toán thực tế một cách hiệu quả.

Bài tập luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn có thể tham khảo thêm các bài tập sau:

  • Bài tập trong sách giáo khoa và sách bài tập Toán 11.
  • Các bài tập trực tuyến trên các trang web học toán.
  • Các đề thi thử Toán 11.

Giaitoan.edu.vn hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 8 trang 46 sách bài tập Toán 11 Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11