Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 36 trang 78 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra và kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 36 trang 78 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Một chất điểm chuyển động theo phương trình \(s\left( t \right) = \frac{1}{3}{t^3} - 3{t^2} + 8t + 2,\)
Đề bài
Một chất điểm chuyển động theo phương trình \(s\left( t \right) = \frac{1}{3}{t^3} - 3{t^2} + 8t + 2,\) trong đó \(t > 0,{\rm{ }}t\) tính bằng giây, \(s\left( t \right)\) tính bằng mét. Tính gia tốc tức thời của chất điểm:
a) Tại thời điểm t = 5 (s).
b) Tại thời điểm mà vận tốc tức thời của chất điểm bằng \( - 1{\rm{ m/s}}.\)
Phương pháp giải - Xem chi tiết
Vận tốc tức thời của chuyển động \(s = s\left( t \right)\) tại thời điểm \(t\) là: \(v\left( t \right) = s'\left( t \right).\)
Gia tốc tức thời của chuyển động \(s = s\left( t \right)\) tại thời điểm \(t\) là:\(s''\left( t \right).\)
Lời giải chi tiết
Ta có: \(s\left( t \right) = \frac{1}{3}{t^3} - 3{t^2} + 8t + 2\)
Vận tốc tức thời của chuyển động \(s = s\left( t \right)\) tại thời điểm \(t\) là:
\(v\left( t \right) = s'\left( t \right) = {t^2} - 6t + 8.\)
Gia tốc tức thời của chuyển động \(s = s\left( t \right)\) tại thời điểm \(t\) là:
\(s''\left( t \right) = v'\left( t \right) = 2t - 6.\)
a) Gia tốc tức thời của chất điểm tại thời điểm \(t = 5\left( {\rm{s}} \right)\) là:
\(s''\left( 5 \right) = v'\left( 5 \right) = 2.5 - 6 = 4\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right).\)
b) Thời điểm mà vận tốc tức thời của chất điểm bằng \( - 1{\rm{ m/s}}\) thỏa mãn phương trình: \({t^2} - 6t + 8 = - 1 \Leftrightarrow {\left( {t - 3} \right)^2} = 0 \Leftrightarrow t = 3\left( {\rm{s}} \right).\)
Gia tốc tức thời của chất điểm tại thời điểm mà vận tốc tức thời của chất điểm bằng \( - 1{\rm{ m/s}}\) là: \(s''\left( 3 \right) = v'\left( 3 \right) = 2.3 - 6 = 0\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right).\)
Bài 36 trang 78 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học không gian.
Bài 36 thường bao gồm các dạng bài tập sau:
Để giúp các bạn học sinh giải bài 36 trang 78 một cách hiệu quả, giaitoan.edu.vn xin trình bày hướng dẫn giải chi tiết cho từng câu hỏi:
Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính tích vô hướng của a và b.
Giải:
Tích vô hướng của hai vectơ a và b được tính theo công thức:
a ⋅ b = xaxb + yayb + zazb
Trong đó, a = (xa; ya; za) và b = (xb; yb; zb).
Áp dụng công thức, ta có:
a ⋅ b = (1)(-2) + (2)(1) + (3)(0) = -2 + 2 + 0 = 0
Vậy, tích vô hướng của a và b là 0.
Cho hai vectơ u và v có độ dài lần lượt là 3 và 4, và góc giữa chúng là 60°. Tính tích vô hướng của u và v.
Giải:
Tích vô hướng của hai vectơ u và v được tính theo công thức:
u ⋅ v = |u| |v| cos(θ)
Trong đó, |u| và |v| là độ dài của hai vectơ, và θ là góc giữa chúng.
Áp dụng công thức, ta có:
u ⋅ v = (3)(4)cos(60°) = 12 * (1/2) = 6
Vậy, tích vô hướng của u và v là 6.
Tích vô hướng có nhiều ứng dụng quan trọng trong hình học không gian, bao gồm:
Hy vọng với hướng dẫn chi tiết này, các bạn học sinh sẽ tự tin hơn khi giải bài 36 trang 78 sách bài tập Toán 11 Cánh Diều. Chúc các bạn học tập tốt!