Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 52 trang 57 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho cấp số nhân \(\left( {{u_n}} \right)\) có tất cả các số hạng đều không âm
Đề bài
Cho cấp số nhân \(\left( {{u_n}} \right)\) có tất cả các số hạng đều không âm và \({u_2} = 6\), \({u_4} = 24\). Tổng 10 số hạng đầu của \(\left( {{u_n}} \right)\) là:
A. \(3\left( {1 - {2^{10}}} \right)\)
B. \(3\left( {{2^9} - 1} \right)\)
C. \(3\left( {{2^{10}} - 1} \right)\)
D. \(3\left( {1 - {2^9}} \right)\)
Phương pháp giải - Xem chi tiết
Do tất cả các số hạng đều không âm nên công bội \(q\) không âm.
Sử dụng công thức \({u_n} = {u_1}.{q^{n - 1}}\) để tìm công bội \(q\) và số hạng đầu \({u_1}\).
Sử dụng công thức \({S_n} = {u_1}\frac{{1 - {q^n}}}{{1 - q}}\) để tính tổng \(n\) số hạng đầu của cấp số nhân.
Lời giải chi tiết
Do tất cả các số hạng đều không âm nên công bội \(q\) không âm.
Ta có \({u_2} = {u_1}q\) và \({u_4} = {u_1}{q^3} = \left( {{u_1}q} \right){q^2}\)
Do \({u_2} = 6\), \({u_4} = 24\), ta suy ra \(6{q^2} = 24 \Rightarrow {q^2} = 4 \Rightarrow q = 2\) (do \(q\) không âm).
Từ đó, số hạng đầu \({u_1} = \frac{{{u_2}}}{q} = \frac{6}{2} = 3\).
Vậy tổng 10 số hạng đầu của \(\left( {{u_n}} \right)\) là:
\({S_{10}} = {u_1}\frac{{1 - {q^{10}}}}{{1 - q}} = 3\frac{{1 - {2^{10}}}}{{1 - 2}} = 3\left( {{2^{10}} - 1} \right)\)
Đáp án đúng là C.
Bài 52 trang 57 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về phép biến hình. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán hình học.
Bài tập 52 thường bao gồm các dạng bài sau:
Để giải bài 52 trang 57 sách bài tập Toán 11 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Dưới đây là một ví dụ minh họa cách giải một bài tập trong bài 52 trang 57:
Bài tập: Cho điểm A(1; 2) và phép tịnh tiến theo vectơ v = (3; -1). Tìm ảnh A' của điểm A qua phép tịnh tiến đó.
Giải:
Áp dụng công thức phép tịnh tiến: A'(x' ; y') = A(x ; y) + v(a ; b) = (x + a ; y + b)
Thay các giá trị vào, ta có: A'(1 + 3 ; 2 - 1) = A'(4 ; 1)
Vậy, ảnh A' của điểm A qua phép tịnh tiến theo vectơ v = (3; -1) là A'(4; 1).
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 11:
Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin giải bài 52 trang 57 sách bài tập Toán 11 Cánh Diều và đạt kết quả tốt trong môn học. Chúc bạn học tập hiệu quả!