Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 4 trang 34 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 4 trang 34 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Điều kiện xác định của \({x^{\sqrt 2 }}\) là:
Đề bài
Điều kiện xác định của \({x^{\sqrt 2 }}\) là:
A. \(x \in \mathbb{R}\)
B. \(x \ne 0\)
C. \(x \ge 0\)
D. \(x > 0\)
Phương pháp giải - Xem chi tiết
Dựa vào định nghĩa để làm
Lời giải chi tiết
Từ định nghĩa lũy thừa với số thực:
Cho a là số thực dương, α là số vô tỉ, \(\left( {{r_n}} \right)\) là dãy số hữu tỉ và \(\lim {r_n} = \alpha .\) Giới hạn của dãy số \(\left( {{a^{{r_n}}}} \right)\) gọi là lũy thừa của a với số mũ α, kí hiệu \({a^\alpha },{\rm{ }}{a^\alpha } = \lim {r_n}.\)
Đáp án D.
Bài 4 trang 34 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách xác định tập xác định, tập giá trị, và vẽ đồ thị hàm số. Việc nắm vững các khái niệm này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 4 thường bao gồm các dạng bài tập sau:
Bài 4: Cho hàm số y = sin(2x). Hãy xác định tập xác định và tập giá trị của hàm số.
Lời giải:
Để giải bài tập về hàm số lượng giác một cách hiệu quả, bạn cần lưu ý những điều sau:
Hàm số lượng giác có rất nhiều ứng dụng trong thực tế, đặc biệt trong các lĩnh vực như:
Để hiểu sâu hơn về hàm số lượng giác, bạn có thể tham khảo các tài liệu sau:
Bài 4 trang 34 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin hơn trong quá trình học tập và giải bài tập. Chúc bạn học tốt!