Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 10 sách bài tập toán 11 - Cánh diều

Giải bài 1 trang 10 sách bài tập toán 11 - Cánh diều

Giải bài 1 trang 10 sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 10 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết và kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của vấn đề.

Trên đường tròn lượng giác lấy điểm \(M\) sao cho \(\left( {OA,OM} \right) = {40^o}\).

Đề bài

Trên đường tròn lượng giác lấy điểm \(M\) sao cho \(\left( {OA,OM} \right) = {40^o}\). Gọi \(M'\) là điểm đối xứng với \(M\) qua gốc toạ độ. Khi đó số đo của góc lượng giác \(\left( {OA,OM'} \right)\) bằng:

A. \({40^o} + k{360^o}\)

B. \({140^o} + k{360^o}\)

C. \({220^o} + k{360^o}\)

D. \({50^o} + k{360^o}\)

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 10 sách bài tập toán 11 - Cánh diều 1

Tính số đo \(\left( {OM,OM'} \right)\)

Sử dụng hệ thức Chasles: \(\left( {OA,OM'} \right) = \left( {OA,OM} \right) + \left( {OM,OM'} \right) + k{360^o}\)

Lời giải chi tiết

Giải bài 1 trang 10 sách bài tập toán 11 - Cánh diều 2

Ta có \(\left( {OA,OM} \right) = {40^o}\).

Do \(M'\) đối xứng với \(M\) qua \(O\), ta suy ra \(\left( {OM,OM'} \right) = {180^o}\)

Do đó, \(\left( {OA,OM'} \right) = \left( {OA,OM} \right) + \left( {OM,OM'} \right) + k{360^o} = {220^o} + k{360^o}\)

Đáp án đúng là C.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 1 trang 10 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 1 trang 10 sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 1 trang 10 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về định nghĩa hàm số, tập xác định, tập giá trị, và các tính chất của hàm số bậc hai để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là rất quan trọng để hoàn thành tốt bài tập này.

Nội dung bài tập

Bài 1 trang 10 sách bài tập Toán 11 - Cánh Diều thường bao gồm các dạng bài tập sau:

  • Xác định hàm số bậc hai.
  • Tìm tập xác định của hàm số.
  • Tìm tập giá trị của hàm số.
  • Xác định các yếu tố của parabol (đỉnh, trục đối xứng, tiêu điểm, đường chuẩn).
  • Vẽ đồ thị hàm số bậc hai.
  • Giải các bài toán liên quan đến ứng dụng của hàm số bậc hai.

Phương pháp giải bài tập

Để giải bài tập trang 10 sách bài tập Toán 11 - Cánh Diều một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Nắm vững định nghĩa và các tính chất của hàm số bậc hai: Hiểu rõ định nghĩa, tập xác định, tập giá trị, và các yếu tố của parabol là nền tảng để giải quyết các bài toán liên quan.
  2. Sử dụng công thức: Áp dụng các công thức liên quan đến hàm số bậc hai để tính toán các yếu tố cần thiết.
  3. Vẽ đồ thị: Vẽ đồ thị hàm số bậc hai giúp bạn hình dung rõ hơn về tính chất và ứng dụng của hàm số.
  4. Phân tích bài toán: Đọc kỹ đề bài, xác định rõ yêu cầu và các dữ kiện đã cho.
  5. Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Bài tập: Tìm tập xác định của hàm số f(x) = (x+1)/(x-2)

Giải:

Hàm số f(x) xác định khi và chỉ khi mẫu số khác 0. Do đó, x - 2 ≠ 0, suy ra x ≠ 2. Vậy tập xác định của hàm số là D = R \ {2}.

Lưu ý quan trọng

Khi giải bài tập về hàm số bậc hai, bạn cần lưu ý những điều sau:

  • Luôn kiểm tra điều kiện xác định của hàm số.
  • Sử dụng đúng công thức và đơn vị đo.
  • Vẽ đồ thị hàm số một cách chính xác.
  • Phân tích kỹ đề bài và lựa chọn phương pháp giải phù hợp.

Tổng kết

Bài 1 trang 10 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số bậc hai. Bằng cách nắm vững kiến thức nền tảng, áp dụng các phương pháp giải phù hợp, và luyện tập thường xuyên, bạn có thể tự tin giải quyết các bài tập tương tự.

Bảng tổng hợp các công thức quan trọng

Công thứcMô tả
y = ax2 + bx + cDạng tổng quát của hàm số bậc hai
x = -b/(2a)Hoành độ đỉnh của parabol
Δ = b2 - 4acBiệt thức của phương trình bậc hai

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 1 trang 10 sách bài tập Toán 11 - Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11