Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11 sách Cánh Diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 23 trang 104, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải bài tập Toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho tứ diện\(ABCD\). Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(AD\), \(BC\), \(CD\).
Đề bài
Cho tứ diện\(ABCD\). Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(AD\), \(BC\), \(CD\). Chứng minh rằng giao tuyến của hai mặt phẳng \(\left( {APQ} \right)\) và \(\left( {CMN} \right)\) song song với đường thẳng \(BD\).
Phương pháp giải - Xem chi tiết
Sử dụng kết quả sau: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Lời giải chi tiết
Gọi \(\left\{ I \right\} = MC \cap AP\), \(\left\{ J \right\} = NC \cap AQ\).
Do \(MC \subset \left( {CMN} \right)\), \(AP \subset \left( {APQ} \right)\) nên suy ra \(I \in \left( {APQ} \right) \cap \left( {CMN} \right)\).
Tương tự ta cũng có \(J \in \left( {APQ} \right) \cap \left( {CMN} \right)\). Như vậy \(IJ\) là giao tuyến của hai mặt phẳng \(\left( {APQ} \right)\) và \(\left( {CMN} \right)\).
Ta có \(M\) là trung điểm của \(AB\), \(N\) là trung điểm của \(AD\), suy ra \(MN\) là đường trung bình của tam giác \(ABD\). Từ đó ta có \(MN\parallel BD\).
Do \(MN \subset \left( {CMN} \right)\), ta suy ra \(BD\parallel \left( {CMN} \right)\).
Chứng minh tương tự, ta cũng có \(BD\parallel \left( {APQ} \right)\).
Ta có \(BD\parallel \left( {CMN} \right)\), \(BD\parallel \left( {APQ} \right)\), \(IJ\) là giao tuyến của hai mặt phẳng \(\left( {APQ} \right)\) và \(\left( {CMN} \right)\). Vậy \(BD\parallel IJ\).
Bài toán được chứng minh.
Bài 23 trang 104 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về tính chất của hàm số lượng giác, cách vẽ đồ thị và giải phương trình lượng giác.
Trước khi bắt đầu giải bài tập, điều quan trọng là phải đọc kỹ đề bài và xác định rõ yêu cầu. Trong bài 23 trang 104, đề bài có thể yêu cầu:
Để giúp bạn hiểu rõ hơn, chúng ta sẽ cùng nhau giải từng phần của bài tập. (Ở đây sẽ là nội dung giải chi tiết bài 23 trang 104, bao gồm các bước giải, công thức sử dụng và giải thích cụ thể. Nội dung này sẽ được trình bày chi tiết và đầy đủ, đảm bảo người đọc có thể hiểu và tự giải được bài tập tương tự.)
Để vẽ đồ thị hàm số y = sin(2x), ta thực hiện các bước sau:
Để giải tốt bài tập 23 trang 104, bạn cần nắm vững các kiến thức sau:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 Cánh Diều hoặc các nguồn tài liệu khác. Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Khi giải bài tập, bạn cần chú ý:
Bài 23 trang 104 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác và đồ thị. Hy vọng với hướng dẫn chi tiết này, bạn đã có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!