Logo Header
  1. Môn Toán
  2. Giải bài 42 trang 104 sách bài tập toán 11 - Cánh diều

Giải bài 42 trang 104 sách bài tập toán 11 - Cánh diều

Giải bài 42 trang 104 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 42 trang 104 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và kèm theo các giải thích chi tiết để bạn có thể nắm vững kiến thức.

Cho hình chóp \(S.ABC\) có \(\widehat {ASB} = \widehat {ASC} = {90^o}\).

Đề bài

Cho hình chóp \(S.ABC\) có \(\widehat {ASB} = \widehat {ASC} = {90^o}\). Gọi \(H\) là trực tâm của tam giác \(ABC\). Chứng minh rằng \(\left( {SAH} \right) \bot \left( {ABC} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 42 trang 104 sách bài tập toán 11 - Cánh diều 1

Để chứng minh 2 mặt phẳng vuông góc, ta cần chứng minh 1 đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia.

Lời giải chi tiết

Giải bài 42 trang 104 sách bài tập toán 11 - Cánh diều 2

Do \(H\) là trực tâm của tam giác \(ABC\) nên ta có \(AH \bot BC\).

Do \(\widehat {ASB} = \widehat {ASC} = {90^o}\) nên ta suy ra \(SA \bot SB\) và \(SA \bot SC\). Suy ra \(SA \bot \left( {BSC} \right)\), từ đó \(SA \bot BC\).

Như vậy, vì \(AH \bot BC\), \(SA \bot BC\) nên \(\left( {SAH} \right) \bot BC\).

Mà \(BC \subset \left( {ABC} \right)\), nên \(\left( {SAH} \right) \bot \left( {ABC} \right)\). Bài toán được chứng minh.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 42 trang 104 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 42 trang 104 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 42 trang 104 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Bài tập này thường tập trung vào việc xác định vị trí tương đối giữa đường thẳng và mặt phẳng, tính góc giữa đường thẳng và mặt phẳng, và giải các bài toán ứng dụng liên quan.

Nội dung bài tập 42

Bài 42 thường bao gồm các dạng bài tập sau:

  • Xác định vị trí tương đối giữa đường thẳng và mặt phẳng (song song, nằm trong mặt phẳng, cắt nhau).
  • Tính góc giữa đường thẳng và mặt phẳng.
  • Tính khoảng cách từ một điểm đến một mặt phẳng.
  • Giải các bài toán thực tế liên quan đến ứng dụng của đường thẳng và mặt phẳng.

Phương pháp giải bài tập

Để giải bài tập 42 trang 104 sách bài tập Toán 11 - Cánh Diều hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Kiến thức về vectơ: Sử dụng vectơ để biểu diễn đường thẳng, mặt phẳng và các mối quan hệ giữa chúng.
  2. Phương trình đường thẳng và mặt phẳng: Nắm vững các dạng phương trình của đường thẳng và mặt phẳng.
  3. Các công thức tính góc và khoảng cách: Sử dụng các công thức tính góc giữa đường thẳng và mặt phẳng, khoảng cách từ một điểm đến một mặt phẳng.
  4. Kỹ năng giải phương trình và hệ phương trình: Giải các phương trình và hệ phương trình để tìm ra các giá trị cần thiết.

Ví dụ minh họa

Ví dụ 1: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa đường thẳng d và mặt phẳng (P).

Giải:

Vectơ chỉ phương của đường thẳng d là a = (1, -1, 2). Vectơ pháp tuyến của mặt phẳng (P) là n = (2, -1, 1).

Ta có a.n = 1*2 + (-1)*(-1) + 2*1 = 5 ≠ 0. Do đó, đường thẳng d và mặt phẳng (P) cắt nhau.

Lưu ý khi giải bài tập

Khi giải bài tập 42 trang 104 sách bài tập Toán 11 - Cánh Diều, bạn cần lưu ý những điều sau:

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Vẽ hình minh họa để hình dung rõ hơn về bài toán.
  • Sử dụng các kiến thức và công thức đã học một cách linh hoạt và sáng tạo.
  • Kiểm tra lại kết quả sau khi giải xong bài toán.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể tự giải các bài tập sau:

  • Bài 43 trang 104 sách bài tập Toán 11 - Cánh Diều.
  • Bài 44 trang 104 sách bài tập Toán 11 - Cánh Diều.
  • Các bài tập tương tự trong các sách bài tập khác.

Kết luận

Bài 42 trang 104 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng giải toán về đường thẳng và mặt phẳng trong không gian. Hy vọng rằng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 11