Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 26 trang 51 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 26 trang 51 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} + {u_5} + {u_9} + {u_{13}} + {u_{17}} + {u_{21}} = 234\).
Đề bài
Cho \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} + {u_5} + {u_9} + {u_{13}} + {u_{17}} + {u_{21}} = 234\).
a) Tính \({u_2} + {u_8} + {u_{14}} + {u_{20}}\).
b) Tìm \({u_1}\), \(d\), biết \({u_{10}} = 37\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\)
Lời giải chi tiết
a) Ta có \({u_2} + {u_8} + {u_{14}} + {u_{20}} = {u_1} + d + {u_1} + 7d + {u_1} + 13d + {u_1} + 19d = 4{u_1} + 40d\)
Và \(234 = {u_1} + {u_5} + {u_9} + {u_{13}} + {u_{17}} + {u_{21}}\)
\( = {u_1} + {u_1} + 4d + {u_1} + 8d + {u_1} + 12d + {u_1} + 16d + {u_1} + 20d = 6{u_1} + 60d\)
Suy ra \({u_1} + 10d = \frac{{234}}{6} = 39 \Rightarrow 4{u_1} + 40d = 39.4 = 156\)
Vậy \({u_2} + {u_8} + {u_{14}} + {u_{20}} = 156\).
b) Vì \({u_{10}} = {u_1} + 9d\), từ đó ta có hệ phương trình:
\(\left\{ \begin{array}{l}{u_1} + 10d = 39\\{u_1} + 9d = 37\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 10d = 39\\d = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 19\\d = 2\end{array} \right.\)
Vậy \({u_1} = 19\), \(d = 2\).
Bài 26 trang 51 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc xác định tập xác định, tập giá trị, tính đơn điệu và các tính chất khác của hàm số lượng giác. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về hàm số lượng giác, bao gồm định nghĩa, đồ thị, tính chất và các công thức liên quan.
Tập xác định của hàm số là tập hợp tất cả các giá trị của x mà tại đó hàm số có nghĩa. Đối với hàm số lượng giác, cần chú ý đến các điều kiện sau:
Ví dụ, xét hàm số y = tan(2x). Để xác định tập xác định, ta cần giải điều kiện cos(2x) ≠ 0, tức là 2x ≠ π/2 + kπ, suy ra x ≠ π/4 + kπ/2, với k là số nguyên.
Tập giá trị của hàm số là tập hợp tất cả các giá trị của y mà hàm số có thể nhận được. Đối với hàm số lượng giác:
Tuy nhiên, khi hàm số lượng giác được biến đổi, tập giá trị có thể thay đổi. Ví dụ, xét hàm số y = 2sin(x) + 1. Tập giá trị của hàm số này là [-1, 3].
Tính đơn điệu của hàm số cho biết hàm số tăng hay giảm trên một khoảng nào đó. Để xét tính đơn điệu, ta có thể sử dụng đạo hàm của hàm số. Nếu đạo hàm dương trên một khoảng, hàm số tăng trên khoảng đó. Nếu đạo hàm âm trên một khoảng, hàm số giảm trên khoảng đó.
Ví dụ, xét hàm số y = cos(x). Đạo hàm của hàm số là y' = -sin(x). Trên khoảng (0, π), sin(x) > 0, suy ra y' < 0, do đó hàm số giảm trên khoảng (0, π).
Ngoài tập xác định, tập giá trị và tính đơn điệu, hàm số lượng giác còn có các tính chất khác như tính tuần hoàn, tính chẵn, tính lẻ, và các điểm cực trị. Việc nắm vững các tính chất này giúp học sinh hiểu rõ hơn về hàm số và có thể giải quyết các bài tập phức tạp hơn.
Giả sử bài 26 yêu cầu xác định tập xác định, tập giá trị, tính đơn điệu và vẽ đồ thị của hàm số y = sin(2x). Ta sẽ thực hiện các bước sau:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức hữu ích để giải bài 26 trang 51 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt!