Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều

Giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều

Giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy logic và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,{\rm{ }}N,{\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA,{\rm{ }}BC,{\rm{ }}CD\).

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,{\rm{ }}N,{\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA,{\rm{ }}BC,{\rm{ }}CD\).

a) Xác định giao điểm của đường thẳng \(NP\) với mặt phẳng \(\left( {SAB} \right)\).

b) Xác định giao tuyến của mặt phẳng \(\left( {MNP} \right)\) với các mặt phẳng \(\left( {SAB} \right),{\rm{ }}\left( {SAD} \right),{\rm{ }}\left( {SBC} \right){\rm{, }}\left( {SCD} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 95 sách bài tập toán 11 - Cánh diều 1

a) Để xác định giao điểm của đường thẳng \(NP\) và mặt phẳng \(\left( {SAB} \right)\), ta cần chọn một đường thẳng trong mặt phẳng \(\left( {SAB} \right)\), rồi tìm giao điểm của đường thẳng đó với đường thẳng \(NP\).

b) Để xác định giao tuyến của hai mặt phẳng, ta cần tìm hai điểm chung của hai mặt phẳng đó.

Lời giải chi tiết

Giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều 2

a) Xét mặt phẳng \(\left( {ABCD} \right)\), gọi \(E\) là giao điểm của \(AB\) và \(NP\).

Ta có \(\left\{ E \right\} = AB \cap NP\), mà \(NP \subset \left( {MNP} \right)\) nên \(\left\{ E \right\} = \left( {SAB} \right) \cap NP\).

b)

Giao tuyến của \(\left( {MNP} \right)\)\(\left( {SAB} \right)\):

Ta có \(\left\{ \begin{array}{l}M \in SA \subset \left( {SAB} \right)\\M \in \left( {MNP} \right)\end{array} \right. \Rightarrow M \in \left( {SAB} \right) \cap \left( {MNP} \right)\).

Mặt khác, theo câu a, ta có \(\left\{ \begin{array}{l}E \in AB \subset \left( {SAB} \right)\\E \in NP \subset \left( {MNP} \right)\end{array} \right. \Rightarrow E \in \left( {SAB} \right) \cap \left( {MNP} \right)\).

Từ đó, giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(ME\).

Giao tuyến của \(\left( {MNP} \right)\)\(\left( {SAD} \right)\):

Trên mặt phẳng \(\left( {ABCD} \right)\), gọi \(F\) là giao điểm của \(AD\) và \(NP\).

Vì \(F\) là giao điểm của \(AD\) và \(NP\), ta suy ra \(\left\{ \begin{array}{l}F \in AD\\F \in NP\end{array} \right.\).

Do \(AD \subset \left( {SAD} \right)\), \(NP \subset \left( {MNP} \right)\) nên ta có \(\left\{ \begin{array}{l}F \in \left( {SAD} \right)\\F \in \left( {MNP} \right)\end{array} \right. \Rightarrow F \in \left( {SAD} \right) \cap \left( {MNP} \right)\).

Hơn nữa, ta cũng có \(\left\{ \begin{array}{l}M \in SA \subset \left( {SAD} \right)\\M \in \left( {MNP} \right)\end{array} \right. \Rightarrow M \in \left( {SAD} \right) \cap \left( {MNP} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(MF\).

Giao tuyến của \(\left( {MNP} \right)\)\(\left( {SBC} \right)\):

Ta có \(ME\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {MNP} \right)\)\( \Rightarrow ME \subset \left( {SAB} \right)\).

Trên mặt phẳng \(\left( {SAB} \right)\), gọi \(\left\{ K \right\} = ME \cap SB\).

Suy ra \(\left\{ \begin{array}{l}K \in ME \subset \left( {MNP} \right)\\K \in SB \subset \left( {SBC} \right)\end{array} \right. \Rightarrow K \in \left( {MNP} \right) \cap \left( {SBC} \right)\).

Hơn nữa, ta có \(\left\{ \begin{array}{l}N \in \left( {MNP} \right)\\N \in BC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow N \in \left( {MNP} \right) \cap \left( {SBC} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(NK\).

Giao tuyến của \(\left( {MNP} \right)\)\(\left( {SCD} \right)\):

Ta có \(MF\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {MNP} \right)\)\( \Rightarrow MF \subset \left( {SAD} \right)\).

Trên mặt phẳng \(\left( {SAD} \right)\), gọi \(\left\{ L \right\} = MF \cap SD\).

Suy ra \(\left\{ \begin{array}{l}L \in MF \subset \left( {MNP} \right)\\L \in SD \subset \left( {SCD} \right)\end{array} \right. \Rightarrow L \in \left( {MNP} \right) \cap \left( {SCD} \right)\).

Hơn nữa, ta có \(\left\{ \begin{array}{l}P \in \left( {MNP} \right)\\P \in CD \subset \left( {SCD} \right)\end{array} \right. \Rightarrow P \in \left( {MNP} \right) \cap \left( {SCD} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(LP\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều: Tổng quan

Bài 7 trang 95 sách bài tập toán 11 - Cánh diều thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách vẽ đồ thị hàm số và giải các phương trình, bất phương trình lượng giác cơ bản.

Nội dung bài tập

Bài 7 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số lượng giác: Yêu cầu học sinh xác định khoảng giá trị của x để hàm số có nghĩa.
  • Tìm tập giá trị của hàm số lượng giác: Yêu cầu học sinh xác định khoảng giá trị mà hàm số có thể đạt được.
  • Khảo sát sự biến thiên của hàm số lượng giác: Yêu cầu học sinh xác định khoảng đồng biến, nghịch biến, cực trị của hàm số.
  • Vẽ đồ thị hàm số lượng giác: Yêu cầu học sinh vẽ đồ thị của hàm số dựa trên các tính chất đã khảo sát.
  • Giải phương trình, bất phương trình lượng giác: Yêu cầu học sinh tìm nghiệm của phương trình hoặc tập nghiệm của bất phương trình lượng giác.

Phương pháp giải bài tập

Để giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ định nghĩa, tính chất của hàm số lượng giác, các công thức biến đổi lượng giác.
  2. Phân tích bài toán: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và các kiến thức cần vận dụng.
  3. Sử dụng các công cụ hỗ trợ: Sử dụng máy tính bỏ túi, phần mềm vẽ đồ thị để kiểm tra kết quả và trực quan hóa bài toán.
  4. Luyện tập thường xuyên: Giải nhiều bài tập tương tự để rèn luyện kỹ năng và làm quen với các dạng bài khác nhau.

Ví dụ minh họa

Bài toán: Giải phương trình 2sin(x) - 1 = 0

Lời giải:

2sin(x) - 1 = 0

sin(x) = 1/2

x = π/6 + k2π hoặc x = 5π/6 + k2π (k ∈ Z)

Lưu ý khi giải bài tập

Khi giải bài tập về hàm số lượng giác, bạn cần lưu ý những điều sau:

  • Kiểm tra điều kiện của bài toán: Đảm bảo rằng các giá trị của x thỏa mãn điều kiện của hàm số.
  • Sử dụng đúng đơn vị đo góc: Đảm bảo rằng các góc được đo bằng radian hoặc độ tùy thuộc vào yêu cầu của bài toán.
  • Kiểm tra lại kết quả: Thay các nghiệm tìm được vào phương trình hoặc bất phương trình ban đầu để kiểm tra tính đúng đắn.

Tài liệu tham khảo

Để học tốt môn toán 11, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa toán 11 - Cánh diều
  • Sách bài tập toán 11 - Cánh diều
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng toán 11 trên YouTube

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều một cách hiệu quả. Chúc bạn học tốt và đạt kết quả cao trong môn toán!

Tài liệu, đề thi và đáp án Toán 11