Logo Header
  1. Môn Toán
  2. Giải bài 58 trang 30 sách bài tập toán 11 - Cánh diều

Giải bài 58 trang 30 sách bài tập toán 11 - Cánh diều

Giải bài 58 trang 30 Sách bài tập Toán 11 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 58 trang 30 Sách bài tập Toán 11 - Cánh Diều. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Giải phương trình:

Đề bài

Giải phương trình:

a) \(\sin 3x = \frac{{\sqrt 3 }}{2}\)

b) \(\sin \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2}\)

c) \(\cos \left( {3x + \frac{\pi }{3}} \right) = - \frac{1}{2}\)

d) \(2\cos x + \sqrt 3 = 0\)

e) \(\sqrt 3 \tan x - 1 = 0\)

g) \(\cot \left( {x + \frac{\pi }{5}} \right) = 1\)

Phương pháp giải - Xem chi tiếtGiải bài 58 trang 30 sách bài tập toán 11 - Cánh diều 1

Sử dụng các kết quả sau:

  1. \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
  2. \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
  3. \(\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
  4. \(\cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết

a) Ta có \(\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\), phương trình trở thành:

\(\sin 3x = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{3} + k2\pi \\3x = \pi - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = \frac{{2\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

b) Ta có \(\sin \left( { - \frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2}\), phương trình trở thành:

\(\sin \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = \sin \left( { - \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} + \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi \\\frac{x}{2} + \frac{\pi }{4} = \pi + \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} = - \frac{\pi }{2} + k2\pi \\\frac{x}{2} = \pi + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \pi + k4\pi \\x = 2\pi + k4\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

c) Ta có \(\cos \frac{{2\pi }}{3} = \frac{{ - 1}}{2}\), phương trình trở thành:

\(\cos \left( {3x + \frac{\pi }{3}} \right) = \cos \frac{{2\pi }}{3} \Leftrightarrow \left[ \begin{array}{l}3x + \frac{\pi }{3} = \frac{{2\pi }}{3} + k2\pi \\3x + \frac{\pi }{3} = - \frac{{2\pi }}{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{3} + k2\pi \\3x = - \pi + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = - \frac{\pi }{3} + k\frac{{2\pi }}{3}\end{array} \right.\)

\(\left( {k \in \mathbb{Z}} \right)\)

d) \(2\cos x + \sqrt 3 = 0 \Leftrightarrow \cos x = - \frac{{\sqrt 3 }}{2}\).

Ta có: \(\cos \frac{{5\pi }}{6} = - \frac{{\sqrt 3 }}{2}\), phương trình trở thành: \(\cos x = \cos \frac{{5\pi }}{6} \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{6} + k2\pi \\x = - \frac{{5\pi }}{6} + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

e) \(\sqrt 3 \tan x - 1 = 0 \Leftrightarrow \tan x = \frac{1}{{\sqrt 3 }}\)

Ta có \(\tan \frac{\pi }{6} = \frac{1}{{\sqrt 3 }}\), phương trình trở thành: \(\tan x = \tan \frac{\pi }{6} \Leftrightarrow x = \frac{\pi }{6} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)

f) Ta có \(\cot \frac{\pi }{4} = 1\), phương trình trở thành:

\(\cot \left( {x + \frac{\pi }{5}} \right) = \cot \frac{\pi }{4} \Leftrightarrow x + \frac{\pi }{5} = \frac{\pi }{4} + k\pi \Leftrightarrow x = \frac{\pi }{{20}} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 58 trang 30 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng soạn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 58 trang 30 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 58 trang 30 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung chi tiết bài 58 trang 30

Bài 58 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ: Yêu cầu học sinh xác định các vectơ trong hình, hoặc biểu diễn một vectơ qua các vectơ khác.
  • Dạng 2: Thực hiện các phép toán vectơ: Tính tổng, hiệu của các vectơ, hoặc tính tích của một số với vectơ.
  • Dạng 3: Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ vào hình học: Sử dụng vectơ để chứng minh các tính chất của hình học, hoặc giải các bài toán liên quan đến hình học.

Hướng dẫn giải bài 58 trang 30 Sách bài tập Toán 11 - Cánh Diều

Để giải bài 58 trang 30 Sách bài tập Toán 11 - Cánh Diều một cách hiệu quả, bạn cần:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ các khái niệm, định nghĩa, tính chất liên quan đến vectơ trong không gian.
  2. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho, và các kết quả cần tìm.
  3. Vẽ hình minh họa: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán, và tìm ra phương pháp giải phù hợp.
  4. Sử dụng các công thức, tính chất liên quan: Áp dụng các công thức, tính chất của vectơ để giải bài toán.
  5. Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài 58 trang 30

Bài tập: Cho hình hộp ABCD.A'B'C'D'. Gọi M là trung điểm của cạnh AB. Chứng minh rằng vectơ AM = 1/2 vectơ AB.

Giải:

Vì M là trung điểm của cạnh AB, nên AM = MB. Do đó, AM = 1/2 AB. Vậy, vectơ AM = 1/2 vectơ AB.

Lưu ý khi giải bài tập về vectơ

  • Luôn vẽ hình minh họa để hình dung rõ hơn về bài toán.
  • Sử dụng đúng các ký hiệu vectơ.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Tài liệu tham khảo

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán online uy tín.
  • Các video bài giảng về vectơ trong không gian.
  • Các bài viết, tài liệu hướng dẫn giải bài tập về vectơ.

Kết luận

Bài 58 trang 30 Sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ trong không gian. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 11