Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 53 trang 117 Sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.
Cho hình chóp (S.ABCD) có đáy là hình bình hành. Trên cạnh (SA) lấy điểm (M)
Đề bài
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Trên cạnh \(SA\) lấy điểm \(M\) sao cho \(MA = 2MS\). Mặt phẳng \(\left( {CDM} \right)\) cắt \(SB\) tại \(N\). Tỉ số \(\frac{{SN}}{{SB}}\) bằng:
A. \(\frac{1}{2}\)
B. \(\frac{1}{3}\)
C. \(\frac{2}{3}\)
D. \(\frac{3}{4}\)
Phương pháp giải - Xem chi tiết
Chứng minh rằng \(MN\) là giao tuyến của hai mặt phẳng \(\left( {CDM} \right)\) và \(\left( {SAB} \right)\), từ đó suy ra \(MN\parallel AB\) và tính tỉ số \(\frac{{SN}}{{SB}}\).
Lời giải chi tiết
Ta thấy rằng \(M \in \left( {CDM} \right) \cap \left( {SAB} \right)\) và \(N\) là giao điểm của \(\left( {CDM} \right)\) và \(SB\). Do \(SB \subset \left( {SAB} \right)\) nên \(N\) là điểm chung của hai mặt phẳng \(\left( {CDM} \right)\) và \(\left( {SAB} \right)\). Từ đó ta suy ra \(MN\) là giao tuyến của hai mặt phẳng \(\left( {CDM} \right)\) và \(\left( {SAB} \right)\).
Nhận xét rằng \(AB\parallel CD\), \(AB \subset \left( {SAB} \right)\), \(CD \subset \left( {CDM} \right)\), \(MN\) là giao tuyến của hai mặt phẳng \(\left( {CDM} \right)\) và \(\left( {SAB} \right)\), ta suy ra \(MN\parallel AB\).
Theo định lí Thales, ta có \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}}\). Do \(MA = 2MS \Rightarrow \frac{{SM}}{{SA}} = \frac{1}{3}\).
Như vậy \(\frac{{SN}}{{SB}} = \frac{1}{3}\). Đáp án đúng là B.
Bài 53 trang 117 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các định lý, tính chất về quan hệ song song, vuông góc giữa đường thẳng và mặt phẳng để giải quyết các bài toán hình học không gian.
Bài 53 thường bao gồm các dạng bài tập sau:
Để giải bài 53 trang 117 Sách bài tập Toán 11 - Cánh Diều, bạn cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho từng phần của bài tập 53 (ví dụ, giả sử bài tập có 3 câu a, b, c):
Đề bài: (Giả định đề bài cụ thể)
Lời giải: (Giải thích chi tiết từng bước, sử dụng các định lý và tính chất liên quan. Ví dụ:)
Để chứng minh đường thẳng d song song với mặt phẳng (P), ta cần chứng minh rằng d song song với một đường thẳng nằm trong (P) và không đồng phẳng với d. Áp dụng định lý về đường thẳng song song với mặt phẳng, ta có...
Đề bài: (Giả định đề bài cụ thể)
Lời giải: (Giải thích chi tiết từng bước)
Đề bài: (Giả định đề bài cụ thể)
Lời giải: (Giải thích chi tiết từng bước)
Ngoài bài 53, bạn có thể tham khảo các bài tập tương tự trong sách bài tập Toán 11 - Cánh Diều để luyện tập và củng cố kiến thức. Một số bài tập gợi ý:
Để giải tốt các bài tập hình học không gian, bạn nên:
Hy vọng với lời giải chi tiết và những hướng dẫn trên, bạn đã có thể tự tin giải bài 53 trang 117 Sách bài tập Toán 11 - Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!
Khái niệm | Định nghĩa |
---|---|
Đường thẳng song song với mặt phẳng | Đường thẳng và mặt phẳng không có điểm chung. |
Đường thẳng vuông góc với mặt phẳng | Đường thẳng tạo với mặt phẳng một góc vuông. |