Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 24 trang 99 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho hai mặt phẳng (left( P right)) và (left( Q right)) song song với nhau.
Đề bài
Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau. Đường thẳng \(d\) cắt \(\left( P \right)\) sao cho góc giữa đường thẳng \(d\) và mặt phẳng \(\left( P \right)\) bằng \(\varphi \) \(\left( {{0^o} < \varphi < {{90}^o}} \right)\). Khi đó, góc giữa đường thẳng \(d\) và mặt phẳng \(\left( Q \right)\) bằng:
A. \({90^o} - \varphi \)
B. \({180^o} - \varphi \)
C. \(\varphi \)
D. \({90^o} + \varphi \)
Phương pháp giải - Xem chi tiết
Gọi \({d_1}\) và \({d_2}\) lần lượt là hình chiếu của \(d\) trên mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Khi đó góc giữa đường thẳng \(d\) và \(\left( P \right)\) chính là góc giữa \(d\) và \({d_1}\), góc giữa đường thẳng \(d\) và \(\left( Q \right)\) chính là góc giữa \(d\) và \({d_2}\). Tính góc giữa đường thẳng \(d\) và \({d_2}\).
Lời giải chi tiết
Gọi \({d_1}\) và \({d_2}\) lần lượt là hình chiếu của \(d\) trên mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Khi đó góc giữa đường thẳng \(d\) và \(\left( P \right)\) chính là góc giữa \(d\) và \({d_1}\), góc giữa đường thẳng \(d\) và \(\left( Q \right)\) chính là góc giữa \(d\) và \({d_2}\).
Gọi \(A\) là giao điểm của \(d\) và \({d_1}\), \(B\) là giao điểm của \(d\) và \({d_2}\). Hiển nhiên \(A \in \left( P \right)\) và \(B \in \left( Q \right)\).
Trên hình vẽ, góc giữa \(d\) và \({d_1}\) là góc \(\widehat {{A_1}}\), góc giữa \(d\) và \({d_2}\) là góc \(\widehat {{B_1}}\). Do \({d_1}\parallel {d_2}\) nên ta có \(\widehat {{A_1}} = \widehat {{B_1}}\). Suy ra góc giữa \(d\) và \(\left( Q \right)\), cũng là góc giữa \(d\) và \({d_2}\) chính là góc giữa \(d\) và \(\left( P \right)\) và bằng \(\varphi \).
Đáp án đúng là C.
Bài 24 trang 99 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học không gian.
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
Để giải bài 24 trang 99, chúng ta cần phân tích kỹ đề bài, xác định các vectơ liên quan, và áp dụng các công thức và kiến thức đã học. Dưới đây là hướng dẫn giải chi tiết cho từng ý của bài tập (giả sử bài tập có nhiều ý):
Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính tích vô hướng của a và b.
Giải:
a.b = (1)(-2) + (2)(1) + (3)(0) = -2 + 2 + 0 = 0
Vậy, tích vô hướng của a và b là 0. Điều này có nghĩa là hai vectơ a và b vuông góc với nhau.
Cho hai vectơ a = (2; -1; 1) và b = (1; 0; -1). Tính góc giữa hai vectơ a và b.
Giải:
Đầu tiên, tính tích vô hướng a.b = (2)(1) + (-1)(0) + (1)(-1) = 2 + 0 - 1 = 1
Tiếp theo, tính độ dài của hai vectơ:
|a| = √(2² + (-1)² + 1²) = √6
|b| = √(1² + 0² + (-1)²) = √2
Áp dụng công thức tính góc:
cos(θ) = (a.b) / (|a||b|) = 1 / (√6 * √2) = 1 / √12 = √3 / 6
Vậy, θ = arccos(√3 / 6) ≈ 73.22°
Để củng cố kiến thức và kỹ năng giải bài tập về tích vô hướng của hai vectơ, bạn có thể luyện tập thêm các bài tập sau:
Khi giải bài tập về tích vô hướng của hai vectơ, bạn cần lưu ý những điều sau:
Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài 24 trang 99 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt!