Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Giải bài 23 trang 74 sách bài tập Toán 11 - Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, từng bước, giúp bạn hiểu rõ phương pháp và cách tiếp cận bài toán.
: Cho hàm số \(y = \frac{{x - 3}}{{x + 2}}\) có đồ thị \(\left( C \right)\).
Đề bài
Cho hàm số \(y = \frac{{x - 3}}{{x + 2}}\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) trong mỗi trường hợp sau:
a) \(d\) song song với đường thẳng \(y = 5x - 2;\)
b) \(d\) vuông góc với đường thẳng \(y = - 20x + 1;\)
Phương pháp giải - Xem chi tiết
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm x0 thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)
Lời giải chi tiết
Ta có: \(y' = \frac{{x + 2 - \left( {x - 3} \right)}}{{{{\left( {x + 2} \right)}^2}}} = \frac{5}{{{{\left( {x + 2} \right)}^2}}}.\)
a)Vì tiếp tuyến đó song song với đường thẳng \(y = 5x - 2\) nên tiếp tuyến có hệ số góc \(k = 5.\)
Gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị.
\( \Rightarrow y'\left( {{x_0}} \right) = 5 \Leftrightarrow \frac{5}{{{{\left( {{x_0} + 2} \right)}^2}}} = 5 \Leftrightarrow {\left( {{x_0} + 2} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} = - 1\\{x_0} = - 3\end{array} \right.\)
Với \({x_0} = - 1 \Rightarrow \) tiếp điểm \({M_1}\left( { - 1; - 4} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_1}\left( { - 1; - 4} \right)\) là:
\(y = f'\left( { - 1} \right)\left( {x + 1} \right) + f\left( { - 1} \right) \Leftrightarrow y = 5\left( {x + 1} \right) - 4 \Leftrightarrow y = 5x + 1.\)
Với \({x_0} = - 3 \Rightarrow \) tiếp điểm \({M_2}\left( { - 3;6} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_2}\left( { - 3;6} \right)\) là:
\(y = f'\left( { - 3} \right)\left( {x + 3} \right) + f\left( { - 3} \right) \Leftrightarrow y = 5\left( {x + 3} \right) + 6 \Leftrightarrow y = 5x + 21.\)
b)Vì tiếp tuyến đó vuông góc với đường thẳng \(y = - 20x + 1\) nên tiếp tuyến có hệ số góc \(k = \frac{1}{{20}}.\)
Gọi \(N\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị.
\( \Rightarrow y'\left( {{x_0}} \right) = \frac{1}{{20}} \Leftrightarrow \frac{5}{{{{\left( {{x_0} + 2} \right)}^2}}} = \frac{1}{{20}} \Leftrightarrow {\left( {{x_0} + 2} \right)^2} = 100 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 8\\{x_0} = - 12\end{array} \right.\)
Với \({x_0} = 8 \Rightarrow \) tiếp điểm \({M_1}\left( {8;\frac{1}{2}} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_1}\left( {8;\frac{1}{2}} \right)\) là:\(y = f'\left( 8 \right)\left( {x - 8} \right) + f\left( 8 \right) \Leftrightarrow y = \frac{1}{{20}}\left( {x - 8} \right) + \frac{1}{2} \Leftrightarrow y = \frac{1}{{20}}x + \frac{1}{{10}}.\)
Với \({x_0} = - 12 \Rightarrow \) tiếp điểm \({M_2}\left( { - 12;\frac{3}{2}} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_2}\left( { - 12;\frac{3}{2}} \right)\) là:
\(y = f'\left( { - 12} \right)\left( {x + 12} \right) + f\left( { - 12} \right) \Leftrightarrow y = \frac{1}{{20}}\left( {x + 12} \right) + \frac{3}{2} \Leftrightarrow y = \frac{1}{{20}}x + \frac{{21}}{{10}}.\)
Bài 23 trang 74 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc vận dụng các kiến thức về đồ thị hàm số lượng giác, tính chất của hàm số, và các phép biến đổi đồ thị để giải quyết các bài toán cụ thể.
Bài 23 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài 23 trang 74 sách bài tập Toán 11 - Cánh Diều.
(Giải thích chi tiết từng bước giải câu a, bao gồm cả lý thuyết liên quan và các phép tính cụ thể)
(Giải thích chi tiết từng bước giải câu b, bao gồm cả lý thuyết liên quan và các phép tính cụ thể)
(Giải thích chi tiết từng bước giải câu c, bao gồm cả lý thuyết liên quan và các phép tính cụ thể)
Để giải tốt bài tập này, bạn cần nắm vững các kiến thức sau:
Dưới đây là một số mẹo giúp bạn giải bài tập hàm số lượng giác hiệu quả:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng rằng với lời giải chi tiết và các kiến thức, mẹo giải bài tập được trình bày trong bài viết này, bạn sẽ tự tin hơn trong việc giải bài 23 trang 74 sách bài tập Toán 11 - Cánh Diều và các bài tập tương tự. Chúc bạn học tập tốt!