Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 27 trang 15 Sách bài tập Toán 11 - Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi bài giải dưới đây để nắm vững kiến thức Toán 11 nhé!
Cho \(\tan \frac{a}{2} = \frac{1}{{\sqrt 2 }}\). Tính \(\sin a\), \(\cos a\), \(\tan a\).
Đề bài
Cho \(\tan \frac{a}{2} = \frac{1}{{\sqrt 2 }}\). Tính \(\sin a\), \(\cos a\), \(\tan a\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(\sin 2x = 2\sin x.\cos x = \frac{{2\sin x\cos x}}{1}\) và \({\sin ^2}x + {\cos ^2}x = 1\) để tính \(\sin a\).
Sử dụng công thức \(\cos 2x = {\cos ^2}x - {\sin ^2}x = \frac{{{{\cos }^2}x - {{\sin }^2}x}}{1}\) và \({\sin ^2}x + {\cos ^2}x = 1\) để tính \(\cos a\).
Sử dụng công thức \(\tan a = \frac{{\sin a}}{{\cos a}}\) để tính \(\tan a\).
Lời giải chi tiết
Do \(\tan \frac{a}{2}\) xác định, nên \(\cos \frac{a}{2} \ne 0\).
Ta có:
\(\sin a = \sin \left( {2.\frac{a}{2}} \right) = 2\sin \frac{a}{2}\cos \frac{a}{2} = \frac{{2\sin \frac{a}{2}\cos \frac{a}{2}}}{1} = \frac{{2\sin \frac{a}{2}\cos \frac{a}{2}}}{{{{\sin }^2}\frac{a}{2} + {{\cos }^2}\frac{a}{2}}}\).
Chia cả tử và mẫu của biểu thức trên cho \({\cos ^2}\frac{a}{2} \ne 0\), ta được:
\(\sin a = \frac{{2\frac{{\sin \frac{a}{2}}}{{\cos \frac{a}{2}}}}}{{\frac{{{{\sin }^2}\frac{a}{2}}}{{{{\cos }^2}\frac{a}{2}}} + 1}} = \frac{{2\tan \frac{a}{2}}}{{{{\tan }^2}\frac{a}{2} + 1}} = \frac{{2.\frac{1}{{\sqrt 2 }}}}{{{{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2} + 1}} = \frac{{2\sqrt 2 }}{3}\)
Tưởng tự, ta có:
\(\cos a = {\cos ^2}\frac{a}{2} - {\sin ^2}\frac{a}{2} = \frac{{{{\cos }^2}\frac{a}{2} - {{\sin }^2}\frac{a}{2}}}{1} = \frac{{{{\cos }^2}\frac{a}{2} - {{\sin }^2}\frac{a}{2}}}{{{{\sin }^2}\frac{a}{2} + {{\cos }^2}\frac{a}{2}}}\)
\( = \frac{{1 - \frac{{{{\sin }^2}\frac{a}{2}}}{{{{\cos }^2}\frac{a}{2}}}}}{{\frac{{{{\sin }^2}\frac{a}{2}}}{{{{\cos }^2}\frac{a}{2}}} + 1}} = \frac{{1 - {{\tan }^2}\frac{a}{2}}}{{1 + {{\tan }^2}\frac{a}{2}}} = \frac{{1 - {{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2}}}{{1 + {{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2}}} = \frac{1}{3}\)
Từ đó, \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{2\sqrt 2 }}{3} :\frac{1}{3} = 2\sqrt 2 \)
Bài 27 trang 15 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh chứng minh đẳng thức vectơ, tìm tọa độ của vectơ, hoặc giải các bài toán liên quan đến hình học sử dụng vectơ.
Bài 27 bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một phép toán hoặc chứng minh một đẳng thức vectơ cụ thể. Để giải bài tập này hiệu quả, học sinh cần nắm vững các kiến thức sau:
Giả sử câu a yêu cầu chứng minh đẳng thức vectơ AB + CD = AD + CB. Để chứng minh đẳng thức này, ta có thể sử dụng quy tắc hình bình hành hoặc quy tắc tam giác để cộng các vectơ. Cụ thể:
Giả sử câu b yêu cầu tìm tọa độ của vectơ MN, biết tọa độ của điểm M(xM, yM) và điểm N(xN, yN). Ta có công thức:
MN = (xN - xM, yN - yM)
Thay tọa độ của điểm M và N vào công thức, ta sẽ tìm được tọa độ của vectơ MN.
Để củng cố kiến thức về vectơ, các em có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 - Cánh Diều hoặc các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và tự tin giải các bài tập khó hơn.
Bài 27 trang 15 Sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp các em học sinh hiểu sâu về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và hướng dẫn giải cụ thể trên đây, các em sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tập tốt!