Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 11 trang 11, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Tính:
Đề bài
Tính:
a) \(A = {\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} + {\cos ^2}\frac{{5\pi }}{8} + {\cos ^2}\frac{{7\pi }}{8}\)
b) \(B = \sin \frac{\pi }{5} + \sin \frac{{2\pi }}{5} + ... + \sin \frac{{9\pi }}{5}\) (có 9 số hạng)
c) \(C = \tan {1^o}{\rm{ }}.{\rm{ }}\tan {2^o}{\rm{ }}.{\rm{ }}\tan {3^o}.{\rm{ }}...{\rm{ }}{\rm{. }}\tan {89^o}\) (gồm 89 thừa số)
Phương pháp giải - Xem chi tiết
a) Sử dụng các công thức \(\cos \left( {\pi - x} \right) = - \cos x\), \(\cos \left( x \right) = \sin \left( {\frac{\pi }{2} - x} \right)\), \({\sin ^2}x + {\cos ^2}x = 1\).
b) Sử dụng công thức \(\sin \left( { - x} \right) = - \sin x\)
c) Sử dụng các công thức \(\tan x = \cot \left( {{{90}^o} - x} \right)\), \(\tan x.\cot x = 1\).
Lời giải chi tiết
a) Ta có:
\(\cos \left( {\frac{{7\pi }}{8}} \right) = \cos \left( {\pi - \frac{\pi }{8}} \right) = - \cos \frac{\pi }{8}\)
\(\cos \left( {\frac{{5\pi }}{8}} \right) = \cos \left( {\pi - \frac{{3\pi }}{8}} \right) = - \cos \frac{{3\pi }}{8}\)
\( \Rightarrow A = {\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} + {\cos ^2}\frac{{5\pi }}{8} + {\cos ^2}\frac{{7\pi }}{8}\)
\( = {\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} + {\cos ^2}\frac{{3\pi }}{8} + {\cos ^2}\frac{\pi }{8} = 2\left( {{{\cos }^2}\frac{\pi }{8} + {{\cos }^2}\frac{{3\pi }}{8}} \right)\)
Mặt khác, vì \(\cos \frac{{3\pi }}{8} = \sin \left( {\frac{\pi }{2} - \frac{{3\pi }}{8}} \right) = \sin \frac{\pi }{8}\)
Từ đó \(A = 2\left( {{{\cos }^2}\frac{\pi }{8} + {{\sin }^2}\frac{\pi }{8}} \right) = 2\).
b) Ta có: \(\sin \frac{{9\pi }}{5} = \sin \left( { - \frac{\pi }{5} + 2\pi } \right) = \sin \left( { - \frac{\pi }{5}} \right) = - \sin \frac{\pi }{5} \Rightarrow \sin \frac{{9\pi }}{5} + \sin \frac{\pi }{5} = 0\)
Tương tự ta có \(\sin \frac{{8\pi }}{5} + \sin \frac{{2\pi }}{5} = 0\), \(\sin \frac{{7\pi }}{5} + \sin \frac{{3\pi }}{5} = 0\), \(\sin \frac{{6\pi }}{5} + \sin \frac{{4\pi }}{5} = 0\)
Như vậy \(B = 0 + 0 + 0 + 0 + \sin \frac{{5\pi }}{5} = \sin \pi = 0\)
c) Ta có \(\tan {89^o} = \cot \left( {{{90}^o} - {{89}^o}} \right) = \cot {1^o}\), \(\tan {88^o} = \cot \left( {{{90}^o} - {{88}^o}} \right) = \cot {2^o}\),…
\(\tan {46^o} = \cot \left( {{{90}^o} - {{46}^o}} \right) = \cot {44^o}\).
Do đó \(C = \left( {\tan {1^o}.\tan {{89}^o}} \right)\left( {\tan {2^o}.\tan {{88}^o}} \right)...\left( {\tan {{44}^o}.\tan {{46}^o}} \right)\tan {45^o}\)
\( = \left( {\tan {1^o}.\cot {1^o}} \right)\left( {\tan {2^o}.\cot {2^o}} \right)...\left( {\tan {{44}^o}.\cot {{44}^o}} \right).1 = 1\)
Bài 11 trang 11 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, các phép biến đổi lượng giác cơ bản và phương pháp giải phương trình lượng giác để tìm ra nghiệm.
Bài 11 thường bao gồm các dạng bài tập sau:
Bài 11: Cho hàm số y = sin(2x + π/3). Tìm tập xác định của hàm số.
Lời giải:
Hàm số y = sin(2x + π/3) là hàm số lượng giác. Hàm số sin(x) xác định với mọi x thuộc tập số thực. Do đó, hàm số y = sin(2x + π/3) xác định với mọi x thuộc tập số thực.
Vậy, tập xác định của hàm số là D = ℝ.
Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 11 trang 11 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!