Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 12 trang 11, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Chứng minh rằng trong tam giác \(ABC\), ta có:
Đề bài
Chứng minh rằng trong tam giác \(ABC\), ta có:
a) \(\sin B = \sin \left( {A + C} \right)\)
b) \(\cos C = - \cos \left( {A + B + 2C} \right)\)
c) \(\sin \frac{A}{2} = \cos \frac{{B + C}}{2}\)
d) \(\tan \frac{{A + B - 2C}}{2} = \cot \frac{{3C}}{2}\)
Phương pháp giải - Xem chi tiết
Sử dụng định lí tổng 3 góc trong một tam giác: \(A + B + C = \pi \)
a) Sử dụng công thức \(\sin x = \sin \left( {\pi - x} \right)\)
b) Sử dụng công thức \(\cos \left( {\pi + x} \right) = - \cos x\)
c) Sử dụng công thức \(\sin x = \cos \left( {\frac{\pi }{2} - x} \right)\)
d) Sử dụng công thức \(\tan x = \cot \left( {\frac{\pi }{2} - x} \right)\)
Lời giải chi tiết
Trong tam giác \(ABC\), ta có \(A + B + C = \pi \).
a) Do \(A + B + C = \pi \Rightarrow A + C = \pi - B \Rightarrow \sin \left( {A + C} \right) = \sin \left( {\pi - B} \right) = \sin B\).
b) Do \(A + B + C = \pi \Rightarrow A + B + 2C = \pi + C\)
\( \Rightarrow \cos \left( {A + B + 2C} \right) = \cos \left( {\pi + C} \right) = - \cos C\)
c) Do \(A + B + C = \pi \Rightarrow \frac{{A + B + C}}{2} = \frac{\pi }{2} \Rightarrow \frac{{B + C}}{2} = \frac{\pi }{2} - \frac{A}{2}\)
\( \Rightarrow \sin \frac{A}{2} = \cos \left( {\frac{\pi }{2} - \frac{A}{2}} \right) = \cos \frac{{B + C}}{2}\)
d)
Do \(A + B + C = \pi \Rightarrow \frac{{A + B + C}}{2} = \frac{\pi }{2} \Rightarrow \frac{{A + B - 2C}}{2} = \frac{{A + B + C - 3C}}{2} = \frac{\pi }{2} - \frac{{3C}}{2}\)
\( \Rightarrow \tan \frac{{A + B - 2C}}{2} = \tan \left( {\frac{\pi }{2} - \frac{{3C}}{2}} \right) = \cot \frac{{3C}}{2}\).
Bài 12 trang 11 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách vẽ đồ thị và giải các bài toán liên quan đến ứng dụng của hàm số lượng giác trong thực tế.
Bài 12 thường bao gồm các dạng bài tập sau:
Bài 12: Cho hàm số y = sin(2x + π/3). Tìm tập xác định và tập giá trị của hàm số.
Lời giải:
Để giải tốt các bài tập về hàm số lượng giác, bạn nên:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Bài 12 trang 11 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà giaitoan.edu.vn đã cung cấp, bạn sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt trong các kỳ thi.