Logo Header
  1. Môn Toán
  2. Giải bài 67 trang 51 sách bài tập toán 11 - Cánh diều

Giải bài 67 trang 51 sách bài tập toán 11 - Cánh diều

Giải bài 67 trang 51 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 67 trang 51 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Dân số thành phố Hà Nội năm 2022 khoảng 8,4 triệu người. Giả sử tỉ lệ tăng dân số hàng năm của Hà Nội không đổi

Đề bài

Dân số thành phố Hà Nội năm 2022 khoảng 8,4 triệu người. Giả sử tỉ lệ tăng dân số hàng năm của Hà Nội không đổi và bằng \(r = 1,04\% .\) Biết rằng, sau \(t\) năm dân số Hà Nội (tính từ mốc năm 2022) ước tính theo công thức: \(S = A.{e^{rt}},\)trong đó \(A\) là dân số năm lấy làm mốc. Hỏi từ năm nào trở đi, dân số của Hà Nội vượt quá 10 triệu người?

Phương pháp giải - Xem chi tiếtGiải bài 67 trang 51 sách bài tập toán 11 - Cánh diều 1

Dựa vào công thức \(S = A.{e^{rt}}\).

Lời giải chi tiết

Ta có: \(S = A.{e^{rt}} \Rightarrow {e^{rt}} = \frac{S}{A} \Rightarrow t = \frac{{\ln \left( {\frac{S}{A}} \right)}}{r}.\)

Dân số của Hà Nội vượt quá 10 triệu người sau thời gian:

\(t = \frac{{\ln \left( {\frac{S}{A}} \right)}}{r} = \frac{{\ln \left( {\frac{{10}}{{8,4}}} \right)}}{{\frac{{1,04}}{{100}}}} \approx 17\)(năm).

Vậy dân số của Hà Nội vượt quá 10 triệu người vào năm: \(2022 + 17 = 2039.\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 67 trang 51 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 67 trang 51 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 67 trang 51 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 67 thường bao gồm các dạng bài tập sau:

  • Chứng minh đẳng thức vectơ: Yêu cầu học sinh sử dụng các quy tắc và tính chất của vectơ để chứng minh một đẳng thức vectơ cho trước.
  • Tìm vectơ: Yêu cầu học sinh tìm một vectơ thỏa mãn các điều kiện cho trước, ví dụ như tìm vectơ tổng, vectơ hiệu, hoặc vectơ tích.
  • Ứng dụng vectơ vào hình học: Yêu cầu học sinh sử dụng vectơ để giải quyết các bài toán liên quan đến hình học, ví dụ như chứng minh ba điểm thẳng hàng, chứng minh hai đường thẳng song song, hoặc tính diện tích hình bình hành.

Hướng dẫn giải chi tiết

Để giải bài 67 trang 51 sách bài tập Toán 11 - Cánh Diều một cách hiệu quả, bạn có thể tham khảo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài tập, các dữ kiện đã cho, và các kết quả cần tìm.
  2. Vẽ hình: Vẽ hình minh họa cho bài tập, giúp bạn hình dung rõ hơn về các đối tượng và mối quan hệ giữa chúng.
  3. Chọn hệ tọa độ: Chọn một hệ tọa độ thích hợp để biểu diễn các vectơ và các điểm trong không gian.
  4. Biểu diễn các vectơ bằng tọa độ: Sử dụng tọa độ của các điểm để biểu diễn các vectơ liên quan đến bài tập.
  5. Áp dụng các quy tắc và tính chất của vectơ: Sử dụng các quy tắc và tính chất của vectơ để thực hiện các phép toán cần thiết, ví dụ như phép cộng, phép trừ, tích của một số với vectơ.
  6. Kiểm tra kết quả: Kiểm tra lại kết quả của bạn để đảm bảo tính chính xác và hợp lý.

Ví dụ minh họa

Bài toán: Cho hình bình hành ABCD. Gọi M là trung điểm của cạnh BC. Chứng minh rằng vectơ AM = (1/2) * (vectơ AB + vectơ AD).

Giải:

Ta có: vectơ AM = vectơ AB + vectơ BM. Vì M là trung điểm của BC, nên vectơ BM = (1/2) * vectơ BC. Mà vectơ BC = vectơ AD, do đó vectơ BM = (1/2) * vectơ AD. Vậy, vectơ AM = vectơ AB + (1/2) * vectơ AD.

Lưu ý quan trọng

Khi giải các bài tập về vectơ, bạn cần lưu ý những điều sau:

  • Nắm vững các định nghĩa và tính chất của vectơ.
  • Sử dụng các quy tắc và tính chất của vectơ một cách chính xác.
  • Vẽ hình minh họa để hình dung rõ hơn về bài tập.
  • Kiểm tra lại kết quả của bạn để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về vectơ, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Cánh Diều
  • Sách bài tập Toán 11 - Cánh Diều
  • Các trang web học Toán online uy tín

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 67 trang 51 sách bài tập Toán 11 - Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11