Logo Header
  1. Môn Toán
  2. Giải bài 59 trang 30 sách bài tập toán 11 - Cánh diều

Giải bài 59 trang 30 sách bài tập toán 11 - Cánh diều

Giải bài 59 trang 30 Sách bài tập Toán 11 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 59 trang 30 Sách bài tập Toán 11 - Cánh Diều. Bài viết này sẽ cung cấp cho bạn các bước giải cụ thể, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, chính xác và cập nhật mới nhất để hỗ trợ bạn trong quá trình học tập môn Toán.

Tìm góc lượng giác \(x\) sao cho:

Đề bài

Tìm góc lượng giác \(x\) sao cho:

a) \(\sin 2x = \sin {42^o}\)

b) \(\sin \left( {x - {{60}^o}} \right) = - \frac{{\sqrt 3 }}{2}\)

c) \(\cos \left( {x + {{50}^o}} \right) = \frac{1}{2}\)

d) \(\cos 2x = \cos \left( {3x + {{10}^o}} \right)\)

e) \(\tan x = \tan {25^o}\)

g) \(\cot x = \cot \left( { - {{32}^o}} \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 59 trang 30 sách bài tập toán 11 - Cánh diều 1

Sử dụng các kết quả sau:

  1. \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k{360^o}\\x = {180^o} - \alpha + k{360^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
  2. \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k{360^o}\\x = - \alpha + k{360^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
  3. \(\tan x = \tan \alpha \Leftrightarrow x = \alpha + k{180^o}\)\(\left( {k \in \mathbb{Z}} \right)\)
  4. \(\cot x = \cot \alpha \Leftrightarrow x = \alpha + k{180^o}\)\(\left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết

a) Ta có: \(\sin 2x = \sin {42^o} \Leftrightarrow \left[ \begin{array}{l}2x = {42^o} + k{360^o}\\2x = {180^o} - {42^o} + k{360^o}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {21^o} + k{180^o}\\x = {69^o} + k{180^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

b) Ta có \(\sin \left( { - {{60}^o}} \right) = - \frac{{\sqrt 3 }}{2}\), phương trình trở thành:

\(\sin \left( {x - {{60}^o}} \right) = \sin \left( { - {{60}^o}} \right) \Leftrightarrow \left[ \begin{array}{l}x - {60^o} = - {60^o} + k{360^o}\\x - {60^o} = {180^o} + {60^o} + k{360^o}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k{360^o}\\x = - {60^o} + k{360^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

c) Ta có \(\cos {60^o} = \frac{1}{2}\), phương trình trở thành:

\(\cos \left( {x + {{50}^o}} \right) = \cos \left( {{{60}^o}} \right) \Leftrightarrow \left[ \begin{array}{l}x + {50^o} = {60^o} + k{360^o}\\x + {50^o} = - {60^o} + k{360^o}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {10^o} + k{360^o}\\x = - {110^o} + k{360^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

d) Ta có:

\(\cos 2x = \cos \left( {3x + {{10}^o}} \right) \Leftrightarrow \left[ \begin{array}{l}2x = 3x + {10^o} + k{360^o}\\2x = - \left( {3x + {{10}^o}} \right) + k{360^o}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - x = {10^o} + k{360^o}\\5x = - {10^o} + k{360^o}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = - {10^o} + k{360^o}\\x = - {2^o} + k{72^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

e) Ta có: \(\tan x = \tan {25^o} \Leftrightarrow x = {25^o} + k{180^o}\)\(\left( {k \in \mathbb{Z}} \right)\)

g) Ta có: \(\cot x = \cot \left( { - {{32}^o}} \right) \Leftrightarrow x = - {32^o} + k{180^o}\)\(\left( {k \in \mathbb{Z}} \right)\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 59 trang 30 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 59 trang 30 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 59 trang 30 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 59 thường bao gồm các dạng bài tập sau:

  • Chứng minh đẳng thức vectơ: Yêu cầu học sinh sử dụng các quy tắc và tính chất của vectơ để chứng minh một đẳng thức vectơ cho trước.
  • Tìm vectơ: Yêu cầu học sinh tìm một vectơ thỏa mãn các điều kiện cho trước, ví dụ như tìm vectơ tổng, vectơ hiệu, hoặc vectơ tích.
  • Ứng dụng vectơ vào hình học: Sử dụng vectơ để giải quyết các bài toán liên quan đến hình học, ví dụ như chứng minh ba điểm thẳng hàng, chứng minh hai đường thẳng song song, hoặc tính diện tích hình bình hành.

Lời giải chi tiết bài 59 trang 30

Để giải bài 59 trang 30 Sách bài tập Toán 11 - Cánh Diều một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho, và các kết quả cần tìm.
  2. Vẽ hình: Vẽ hình minh họa bài toán để giúp bạn hình dung rõ hơn về các yếu tố liên quan.
  3. Chọn hệ tọa độ: Chọn một hệ tọa độ thích hợp để biểu diễn các vectơ và các điểm trong không gian.
  4. Biểu diễn các vectơ bằng tọa độ: Sử dụng tọa độ của các điểm để biểu diễn các vectơ liên quan.
  5. Thực hiện các phép toán vectơ: Sử dụng các quy tắc và tính chất của vectơ để thực hiện các phép toán cần thiết, ví dụ như phép cộng, phép trừ, tích của một số với vectơ.
  6. Kiểm tra kết quả: Kiểm tra lại kết quả của bạn để đảm bảo tính chính xác.

Ví dụ minh họa

Bài toán: Cho hình hộp ABCD.A'B'C'D'. Gọi M là trung điểm của cạnh AB. Chứng minh rằng vectơ AM = 1/2 vectơ AB.

Lời giải:

Vì M là trung điểm của cạnh AB, ta có AM = MB. Do đó, AM = 1/2 AB. Vậy, vectơ AM = 1/2 vectơ AB.

Mẹo giải bài tập vectơ

  • Nắm vững các định nghĩa và tính chất của vectơ: Đây là nền tảng để giải quyết mọi bài toán liên quan đến vectơ.
  • Sử dụng hình vẽ: Hình vẽ giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp bạn làm quen với các dạng bài tập và rèn luyện kỹ năng giải toán.
  • Tham khảo các nguồn tài liệu: Sách giáo khoa, sách bài tập, các trang web học toán online là những nguồn tài liệu hữu ích để bạn học tập và tra cứu kiến thức.

Kết luận

Bài 59 trang 30 Sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ trong không gian. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin giải quyết bài toán này và đạt kết quả tốt trong môn Toán.

Bảng tổng hợp các công thức vectơ quan trọng

Công thứcMô tả
a + b = b + aTính giao hoán của phép cộng vectơ
(a + b) + c = a + (b + c)Tính kết hợp của phép cộng vectơ
a + 0 = aPhần tử trung hòa của phép cộng vectơ
a + (-a) = 0Phần tử đối của phép cộng vectơ
k(a + b) = ka + kbTính chất phân phối của phép nhân một số với vectơ đối với phép cộng vectơ

Tài liệu, đề thi và đáp án Toán 11