Logo Header
  1. Môn Toán
  2. Giải bài 62 trang 31 sách bài tập toán 11 - Cánh diều

Giải bài 62 trang 31 sách bài tập toán 11 - Cánh diều

Giải bài 62 trang 31 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 62 trang 31 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Mực nước cao nhất tại một cảng biển là 16 m khi thuỷ triều lên cao và sau 12 giờ khi thuỷ triều xuống thấp thì mực nước thấp nhất là 10 m.

Đề bài

Mực nước cao nhất tại một cảng biển là 16 m khi thuỷ triều lên cao và sau 12 giờ khi thuỷ triều xuống thấp thì mực nước thấp nhất là 10 m. Đồ thị ở hình bên mô tả sự thay đổi chiều cao của mực nước tại cảng trong vòng 24 giờ tính từ lúc nửa đêm. Biết chiều cao của mực nước \(h\) (m) theo thời gian \(t\)(h) \(\left( {0 \le t \le 24} \right)\) được cho bởi công thức \(h = m + a\cos \left( {\frac{\pi }{{12}}t} \right)\) với \(m\), \(a\) là các số thực dương cho trước.

Giải bài 62 trang 31 sách bài tập toán 11 - Cánh diều 1

a) Tìm \(m\), \(a\).

b) Tìm thời điểm trong ngày khi chiều cao của mực nước là 11,5 m.

Phương pháp giải - Xem chi tiếtGiải bài 62 trang 31 sách bài tập toán 11 - Cánh diều 2

a) Mực nước thấp nhất đạt được là \(m - a\) khi \(\cos \left( {\frac{\pi }{{12}}t} \right) = - 1\)

Mực nước cao nhất đạt được là \(m + a\) khi \(\cos \left( {\frac{\pi }{{12}}t} \right) = 1\)

Từ đó tìm được \(m\) và \(a\).

b) Với \(m\) và \(a\) tìm được ở câu a, để tìm thời điểm trong ngày khi chiều cao của mực nước là 11,5 m, ta sẽ giải phương trình ẩn \(t\): \(h = 11,5\) và kết luận.

Lời giải chi tiết

a) Do \( - 1 \le \cos \left( {\frac{\pi }{{12}}t} \right) \le 1 \Rightarrow m - a \le h \le m + a\).

Mực nước thấp nhất đạt được là \(m - a\) (m), mực nước cao nhất đạt được là \(m + a\) (m).

Theo đề bài, ta có hệ phương trình: \(\left\{ \begin{array}{l}m - a = 10\\m + a = 16\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 13\\a = 3\end{array} \right.\)

\( \Rightarrow h = 13 + 3\cos \left( {\frac{\pi }{{12}}t} \right)\)

b) Để tìm thời điểm trong ngày khi chiều cao của mực nước là 11,5 m, ta sẽ giải phương trình: \(h = 11,5 \Leftrightarrow 13 + 3\cos \left( {\frac{\pi }{{12}}t} \right) = 11,5 \Leftrightarrow \cos \left( {\frac{\pi }{{12}}t} \right) = \frac{{ - 1}}{2}\)

\( \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{12}}t = \frac{{2\pi }}{3} + k2\pi \\\frac{\pi }{{12}}t = - \frac{{2\pi }}{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 8 + 24k\\t = - 8 + 24k\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

Như vậy, tại thời điểm \(t = 8\)(h) và \(t = 16\)(h), chiều cao của mực nước là 11,5 m.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 62 trang 31 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng toán học. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 62 trang 31 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 62 trang 31 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép biến đổi lượng giác, tính chất của hàm số lượng giác và các phương pháp giải phương trình lượng giác để tìm ra nghiệm.

Nội dung bài tập

Bài 62 thường bao gồm các dạng bài tập sau:

  • Chứng minh đẳng thức lượng giác: Yêu cầu học sinh chứng minh một đẳng thức lượng giác nào đó bằng cách biến đổi vế trái thành vế phải hoặc ngược lại.
  • Rút gọn biểu thức lượng giác: Yêu cầu học sinh rút gọn một biểu thức lượng giác phức tạp về dạng đơn giản nhất.
  • Giải phương trình lượng giác: Yêu cầu học sinh tìm ra tất cả các nghiệm của một phương trình lượng giác.
  • Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác: Yêu cầu học sinh tìm ra giá trị lớn nhất và giá trị nhỏ nhất của một hàm số lượng giác trong một khoảng xác định.

Phương pháp giải bài tập

Để giải bài 62 trang 31 sách bài tập Toán 11 - Cánh Diều một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Nắm vững các công thức lượng giác cơ bản: Các công thức lượng giác cơ bản là nền tảng để giải các bài tập về hàm số lượng giác.
  2. Sử dụng các phép biến đổi lượng giác: Các phép biến đổi lượng giác như cộng, trừ, nhân, chia, nâng lên lũy thừa, khai căn bậc hai có thể giúp bạn đơn giản hóa biểu thức lượng giác và giải phương trình lượng giác.
  3. Vận dụng các tính chất của hàm số lượng giác: Các tính chất của hàm số lượng giác như tính tuần hoàn, tính chẵn, tính lẻ, khoảng đồng biến, nghịch biến có thể giúp bạn tìm ra nghiệm của phương trình lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác.
  4. Sử dụng máy tính bỏ túi: Máy tính bỏ túi có thể giúp bạn tính toán các giá trị lượng giác và giải phương trình lượng giác một cách nhanh chóng và chính xác.

Ví dụ minh họa

Ví dụ: Giải phương trình lượng giác sau: 2sin(x) - 1 = 0

Lời giải:

2sin(x) - 1 = 0

2sin(x) = 1

sin(x) = 1/2

x = π/6 + k2π hoặc x = 5π/6 + k2π (k ∈ Z)

Lưu ý khi giải bài tập

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài tập.
  • Sử dụng các công thức lượng giác một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải bài tập.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải bài tập.

Tài liệu tham khảo

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:

  • Các trang web học toán online uy tín.
  • Các video bài giảng về hàm số lượng giác.
  • Các bài viết hướng dẫn giải bài tập toán 11.

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 62 trang 31 sách bài tập Toán 11 - Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11