Logo Header
  1. Môn Toán
  2. Giải bài 24 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 24 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 24 trang 50 Sách bài tập Toán 11 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 24 trang 50 Sách bài tập Toán 11 - Cánh Diều. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Cho \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_2} + {u_4} = 22\), \({u_1}{\rm{ }}{\rm{. }}{u_5} = 21\) và công sai \(d\) dương.

Đề bài

Cho \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_2} + {u_4} = 22\), \({u_1}{\rm{ }}{\rm{. }}{u_5} = 21\) và công sai \(d\) dương.

a) Tính \({u_{100}}\), \({S_{100}}\)

b) Tính tổng \({u_1} + {u_5} + {u_9} + ... + {u_{101}}\).

Phương pháp giải - Xem chi tiếtGiải bài 24 trang 50 sách bài tập toán 11 - Cánh diều 1

a) Sử dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\) để tìm \({u_1}\) và \(d\), từ đó tính \({u_{100}}\) và \({S_{100}}\).

b) Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = {u_{4n - 3}}\), ta thấy \({v_1} = {u_1}\), \({v_2} = {u_5}\), \({v_3} = {u_9}\),…, \({v_{26}} = {u_{101}}\).

Vậy \(\left( {{v_n}} \right)\) là cấp số cộng với số hạng đầu \({v_1} = {u_1}\) và công sai \(d' = {v_2} - {v_1} = 4d\).

Do đó, tổng cần tính bằng \({v_1} + {v_2} + {v_3} + ... + {v_{26}}\)

Lời giải chi tiết

a) Ta có:

\({u_2} + {u_4} = 22 \Leftrightarrow {u_1} + d + {u_1} + 3d = 22 \Leftrightarrow 2{u_1} + 4d = 22 \Leftrightarrow {u_1} + 2d = 11\)

\( \Leftrightarrow {u_1} = 11 - 2d\) (1).

Mặt khắc, vì\({u_1}.{u_5} = 21 \Leftrightarrow {u_1}.\left( {{u_1} + 4d} \right) = 21\) (2).

Thế (1) vào (2) ta có:

\(\left( {11 - 2d} \right)\left( {11 - 2d + 4d} \right) = 21 \Leftrightarrow \left( {11 - 2d} \right)\left( {11 + 2d} \right) = 21 \Leftrightarrow {11^2} - {\left( {2d} \right)^2} = 21\)

\(4{d^2} = 100 \Leftrightarrow {d^2} = 25 \Leftrightarrow d = 5\) (do công sai \(d > 0\))

\({u_1} = 11 - 2d = 11 - 10 = 1\).

Vậy số hạng đầu và công sai của cấp số cộng lần lượt là 1 và 5.

Suy ra:

\({u_{100}} = {u_1} + 99d = 1 + 99.5 = 496\), \({S_{100}} = \frac{{\left( {2{u_1} + 99d} \right).100}}{2} = 50\left( {2 + 99.5} \right) = 24850\).

b) Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = {u_{4n - 3}}\), ta thấy \({v_1} = {u_1}\), \({v_2} = {u_5}\), \({v_3} = {u_9}\),…, \({v_{26}} = {u_{101}}\).

Vậy \(\left( {{v_n}} \right)\) là cấp số cộng với số hạng đầu \({v_1} = {u_1} = 1\) và công sai \(d' = {v_2} - {v_1} = 4d = 20\).

Do đó, tổng cần tính bằng

\({v_1} + {v_2} + {v_3} + ... + {v_{26}} = S'_{26} = \frac{{\left( {2{v_1} + 25d'} \right).26}}{2} = 13\left( {2.1 + 25.20} \right) = 6526\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 24 trang 50 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 24 trang 50 Sách bài tập Toán 11 - Cánh Diều: Phân tích chi tiết và hướng dẫn giải

Bài 24 trang 50 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng trong hình học. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các công thức liên quan.

Nội dung bài tập 24 trang 50 Sách bài tập Toán 11 - Cánh Diều

Bài tập 24 thường bao gồm các dạng bài tập sau:

  • Tìm tọa độ của vectơ: Yêu cầu tìm tọa độ của một vectơ dựa trên tọa độ của các điểm đầu và điểm cuối.
  • Thực hiện các phép toán vectơ: Cộng, trừ, nhân với một số thực các vectơ.
  • Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép toán vectơ để chứng minh các đẳng thức cho trước.
  • Ứng dụng vectơ trong hình học: Xác định vị trí tương đối của các điểm, chứng minh các tính chất hình học.

Hướng dẫn giải chi tiết bài 24 trang 50 Sách bài tập Toán 11 - Cánh Diều

Để giải bài tập 24 trang 50 Sách bài tập Toán 11 - Cánh Diều, bạn có thể thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài tập, các dữ kiện đã cho và các kết quả cần tìm.
  2. Vẽ hình minh họa: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và các yếu tố liên quan.
  3. Chọn hệ tọa độ thích hợp: Chọn hệ tọa độ sao cho việc tính toán trở nên đơn giản nhất.
  4. Tìm tọa độ của các điểm và vectơ: Sử dụng các công thức và tính chất liên quan để tìm tọa độ của các điểm và vectơ.
  5. Thực hiện các phép toán vectơ: Cộng, trừ, nhân với một số thực các vectơ để tìm ra kết quả cần thiết.
  6. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bạn phù hợp với yêu cầu của bài tập và các dữ kiện đã cho.

Ví dụ minh họa giải bài 24 trang 50 Sách bài tập Toán 11 - Cánh Diều

Bài toán: Cho A(1; 2), B(3; 4), C(5; 6). Tìm tọa độ của vectơ AB và tính độ dài của vectơ AB.

Giải:

Tọa độ của vectơ AB là: AB = (3 - 1; 4 - 2) = (2; 2).

Độ dài của vectơ AB là: |AB| = √((2)^2 + (2)^2) = √(4 + 4) = √8 = 2√2.

Lưu ý khi giải bài tập về vectơ

  • Nắm vững các khái niệm cơ bản về vectơ, phép toán vectơ và các công thức liên quan.
  • Vẽ hình minh họa để hình dung rõ hơn về bài toán.
  • Chọn hệ tọa độ thích hợp để đơn giản hóa việc tính toán.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện kiến thức về vectơ và ứng dụng trong hình học, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Cánh Diều
  • Sách bài tập Toán 11 - Cánh Diều
  • Các trang web học toán online uy tín như giaitoan.edu.vn

Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin giải quyết bài 24 trang 50 Sách bài tập Toán 11 - Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11