Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 33 trang 55 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra và kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 33 trang 55 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Viết bốn số hạng xen giữa các số 1 và \( - 243\) để được một cấp số nhân có 6 số hạng. Bốn số hạng đó lần lượt là:
Đề bài
Viết bốn số hạng xen giữa các số 1 và \( - 243\) để được một cấp số nhân có 6 số hạng. Bốn số hạng đó lần lượt là:
A. \( - 3; - 9; - 27; - 81\)
B. \(3; - 9;27; - 81\)
C. \(3;9;27;81\)
D. \( - 3;9; - 27;81\)
Phương pháp giải - Xem chi tiết
Khi viết bốn số hạng xen giữa 1 và \( - 243\), ta được một cấp số nhân gồm sáu số hạng với \({u_1} = 1\), \({u_6} = - 243\). Từ đó sử dụng công thức \({u_n} = {u_1}.{q^{n - 1}}\), ta tính được công bội \(q\) và các số hạng \({u_2}\), \({u_3}\), \({u_4}\), \({u_5}\)
Lời giải chi tiết
Khi viết bốn số hạng xen giữa 1 và \( - 243\), ta được một cấp số nhân gồm sáu số hạng với \({u_1} = 1\), \({u_6} = - 243\).
Mặt khác, ta có \({u_6} = {u_1}.{q^5} \Rightarrow - 243 = 1.{q^5} \Rightarrow {q^5} = - 243 \Rightarrow q = - 3\).
Như vậy:
\({u_2} = {u_1}.q = 1.\left( { - 3} \right) = - 3\)
\({u_3} = {u_2}.q = \left( { - 3} \right)\left( { - 3} \right) = 9\)
\({u_4} = {u_3}.q = 9.\left( { - 3} \right) = - 27\)
\({u_5} = {u_4}.q = \left( { - 27} \right)\left( { - 3} \right) = 81\)
Vậy bốn số cần viết vào giữa 1 và \( - 243\) để tạo thành một cấp số nhân là \( - 3;9; - 27;81\).
Đáp án đúng là D.
Bài 33 trang 55 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc xác định tính đơn điệu của hàm số lượng giác trên các khoảng khác nhau, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, và giải các bài toán liên quan đến ứng dụng của hàm số lượng giác.
Trước khi đi vào giải bài tập, chúng ta cần nắm vững các kiến thức lý thuyết sau:
Để giải bài 33 trang 55, chúng ta sẽ thực hiện theo các bước sau:
Ví dụ minh họa: (Giả sử bài 33 yêu cầu xét hàm số f(x) = 2sin(x) + 1 trên khoảng [0, π])
x | 0 | π/2 | π |
---|---|---|---|
f'(x) | + | - | - |
f(x) | 1 | 3 | 1 |
Để củng cố kiến thức, bạn có thể luyện tập thêm với các bài tập tương tự trong sách bài tập Toán 11 Cánh Diều. Hãy chú ý đến việc áp dụng các kiến thức lý thuyết đã học và rèn luyện kỹ năng giải toán một cách thành thạo.
Khi giải các bài tập về hàm số lượng giác, bạn cần lưu ý những điều sau:
Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài 33 trang 55 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt!