Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 8 trang 95 sách bài tập toán 11 - Cánh diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra và kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 8 trang 95 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,{\rm{ }}N,{\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA,{\rm{ }}SB,{\rm{ }}SC\).
Đề bài
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,{\rm{ }}N,{\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA,{\rm{ }}SB,{\rm{ }}SC\).
a) Xác định giao điểm \(I\) của đường thẳng \(MP\) với mặt phẳng \(\left( {SBD} \right)\).
b) Xác định giao điểm \(Q\) của đường thẳng \(SD\) với mặt phẳng \(\left( {MNP} \right)\).
Phương pháp giải - Xem chi tiết
Để xác định giao điểm của mặt phẳng với một đường thẳng cho trước, ta cần chọn một đường thẳng khác nằm trong mặt phẳng đã cho, rồi tìm giao điểm của 2 đường thẳng đó.
Lời giải chi tiết
a) Trên mặt phẳng \(\left( {ABCD} \right)\), gọi \(\left\{ O \right\} = AC \cap BD\).
Trên mặt phẳng \(\left( {SAC} \right)\), gọi \(\left\{ I \right\} = MP \cap SO\).
Do \(SO \subset \left( {SBD} \right)\), ta suy ra \(\left\{ I \right\} = MP \cap \left( {SBD} \right)\).
Vậy \(I\) là giao điểm của \(MP\) và \(\left( {SBD} \right)\).
b) Trên mặt phẳng \(\left( {SBD} \right)\), gọi \(\left\{ Q \right\} = NI \cap SD\).
Do \(NI \subset \left( {MNP} \right)\), ta suy ra \(\left\{ Q \right\} = \left( {MNP} \right) \cap SD\).
Vậy \(Q\) là giao điểm của \(SD\) và \(\left( {MNP} \right)\).
Bài 8 trang 95 sách bài tập toán 11 - Cánh diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học không gian.
Bài 8 thường bao gồm các dạng bài tập sau:
Để giải câu a, ta cần xác định tọa độ của các vectơ liên quan. Sau đó, áp dụng công thức tính tích vô hướng: a.b = xaxb + yayb + zazb. Thay các giá trị tọa độ vào công thức, ta sẽ tìm được kết quả của tích vô hướng.
Câu b thường yêu cầu tìm góc giữa hai vectơ. Ta sử dụng công thức: cos(θ) = (a.b) / (|a||b|), trong đó θ là góc giữa hai vectơ a và b. Sau khi tính được cos(θ), ta sử dụng máy tính hoặc bảng lượng giác để tìm góc θ.
Câu c có thể yêu cầu kiểm tra tính vuông góc của hai vectơ. Ta tính tích vô hướng của hai vectơ. Nếu tích vô hướng bằng 0, thì hai vectơ đó vuông góc với nhau.
Ví dụ: Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính tích vô hướng của a và b.
Giải: a.b = (1)(-2) + (2)(1) + (3)(0) = -2 + 2 + 0 = 0. Vậy tích vô hướng của a và b bằng 0.
Ngoài sách bài tập toán 11 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 8 trang 95 sách bài tập toán 11 - Cánh diều một cách hiệu quả. Chúc bạn học tập tốt!