Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 18 trang 100 sách bài tập Toán 11 - Cánh Diều. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu nhất.
Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải bài tập, từ đó nâng cao kỹ năng giải toán và đạt kết quả tốt hơn trong học tập.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành.
Đề bài
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I\), \(J\),\(K\), \(L\) lần lượt là trọng tâm của các tam giác \(SAB\), \(SBC\), \(SCD\), \(SAD\).
a) Chứng minh rằng bốn điểm \(I\), \(J\),\(K\), \(L\) đồng phẳng và tứ giác \(IJKL\) là hình bình hành.
b) Chứng minh rằng \(JL\parallel {\rm{CD}}\).
c) Xác định giao tuyến của hai mặt phẳng \(\left( {IJKL} \right)\) và \(\left( {SCD} \right)\).
Phương pháp giải - Xem chi tiết
a) Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(BC\), \(CD\), \(DA\).
Chứng minh rằng \(MNPQ\) là hình bình hành. Chứng minh rằng \(IJ\parallel LK\) và \(IJ = LK\), để suy ra tứ giác \(IJLK\) là hình bình hành.
b) Chứng minh \(JL\) và \(CD\) cùng song song với \(NQ\), từ đó suy ra \(JL\parallel CD\).
c) Từ kết quả câu b, và sử dụng tính chất “Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó, hoặc trùng với một trong hai đường thẳng đó” để tìm giao tuyến của hai mặt phẳng \(\left( {IJKL} \right)\) và \(\left( {SCD} \right)\).
Lời giải chi tiết
a) Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(BC\), \(CD\), \(DA\).
Ta có \(M\) là trung điểm của \(AB\), \(N\) là trung điểm của \(BC\), nên \(MN\) là đường trung bình của tam giác \(ABC\). Suy ra \(MN\parallel AC\) và \(MN = \frac{1}{2}AC\).
Tương tự ta có \(PQ\parallel AC\) và \(PQ = \frac{1}{2}AC\).
Suy ra \(MN\parallel PQ\) và \(MN = PQ\). Vậy tứ giác \(MNPQ\) là hình bình hành.
Ta có \(I\) là trọng tâm của tam giác \(SAB\), nên suy ra \(I \in SM\) và \(\frac{{SI}}{{SM}} = \frac{2}{3}\).
Chứng minh tương tự ta cũng có \(J \in SN\) và \(\frac{{SJ}}{{SN}} = \frac{2}{3}\).
Tam giác \(SMN\) có \(\frac{{SI}}{{SM}} = \frac{{SJ}}{{SN}} = \frac{2}{3}\), theo hệ quả của định lí Thales ta suy ra \(IJ\parallel MN\) và \(\frac{{IJ}}{{MN}} = \frac{2}{3}\).
Chứng minh tương tự ta cũng có \(LK\parallel PQ\) và \(\frac{{LK}}{{PQ}} = \frac{2}{3}\).
Từ đó ta suy ra \(IJ\parallel LK\) và \(IJ = LK\). Vậy bốn điểm \(I\), \(J\), \(K\), \(L\) đồng phẳng và tứ giác \(IJLK\) là hình bình hành.
b) Ta có \(L\) là trọng tâm của tam giác \(SAD\), nên suy ra \(L \in SQ\) và \(\frac{{SL}}{{SQ}} = \frac{2}{3}\).
Suy ra \(\frac{{SL}}{{SQ}} = \frac{{SJ}}{{SN}}\), tức là \(JL\parallel NQ\).
Mặt khác \(N\) là trung điểm của \(BC\),\(Q\) là trung điểm của \(DA\) nên suy ra \(NQ\parallel CD\).
Vậy \(JL\parallel CD\).
c) Xét hai mặt phẳng \(\left( {IJKL} \right)\)và \(\left( {SCD} \right)\), ta có \(JL\parallel CD\), \(JL \in \left( {IJKL} \right)\), \(CD \in \left( {SCD} \right)\).
Hơn nữa \(K \in \left( {IJKL} \right) \cap \left( {SCD} \right)\) và \(K \notin JL\), \(K \notin CD\)
Xét hai mặt phẳng \(\left( {IJKL} \right)\)và \(\left( {SCD} \right)\), ta có \(K \in \left( {IJKL} \right) \cap \left( {SCD} \right)\), tức là \(K\) nằm trên giao tuyến của hai mặt phẳng đó. Hơn nữa, \(K \notin JL\), \(K \notin CD\), nên \(JL\) và \(CD\) không là giao tuyến của hai mặt phẳng trên.
Mặt khác, ta có \(JL\parallel CD\), \(JL \in \left( {IJKL} \right)\), \(CD \in \left( {SCD} \right)\) nên giao tuyến của \(\left( {IJKL} \right)\)và \(\left( {SCD} \right)\) là một đường thẳng đi qua \(K\) và song song với \(CD\). Trên hình vẽ, giao tuyến của chúng là đường thẳng \(EF\) đi qua \(K\) và song song với \(CD\).
Bài 18 trang 100 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Bài tập này thường tập trung vào việc xác định vị trí tương đối giữa đường thẳng và mặt phẳng, tìm giao điểm, góc giữa đường thẳng và mặt phẳng, và các bài toán liên quan đến khoảng cách.
Bài 18 bao gồm các dạng bài tập sau:
Để giải bài tập 18 trang 100 sách bài tập Toán 11 - Cánh Diều một cách hiệu quả, bạn nên:
Ví dụ: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Tìm giao điểm của d và (P).
Giải:
Thay phương trình tham số của d vào phương trình (P), ta được:
2(1 + t) - (2 - t) + (3 + 2t) - 5 = 0
2 + 2t - 2 + t + 3 + 2t - 5 = 0
5t - 2 = 0
t = 2/5
Thay t = 2/5 vào phương trình tham số của d, ta được:
x = 1 + 2/5 = 7/5
y = 2 - 2/5 = 8/5
z = 3 + 2(2/5) = 19/5
Vậy giao điểm của d và (P) là (7/5, 8/5, 19/5).
Để củng cố kiến thức và kỹ năng giải bài tập, bạn nên luyện tập thêm với các bài tập tương tự trong sách bài tập và các đề thi thử. Giaitoan.edu.vn cung cấp nhiều bài tập luyện tập khác với các mức độ khó khác nhau để bạn có thể rèn luyện và nâng cao khả năng của mình.
Bài 18 trang 100 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn hiểu rõ hơn về các khái niệm và phương pháp giải toán liên quan đến đường thẳng và mặt phẳng trong không gian. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.