Logo Header
  1. Môn Toán
  2. Giải bài 18 trang 100 sách bài tập toán 11 - Cánh diều

Giải bài 18 trang 100 sách bài tập toán 11 - Cánh diều

Giải bài 18 trang 100 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 18 trang 100 sách bài tập Toán 11 - Cánh Diều. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu nhất.

Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải bài tập, từ đó nâng cao kỹ năng giải toán và đạt kết quả tốt hơn trong học tập.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành.

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I\), \(J\),\(K\), \(L\) lần lượt là trọng tâm của các tam giác \(SAB\), \(SBC\), \(SCD\), \(SAD\).

a) Chứng minh rằng bốn điểm \(I\), \(J\),\(K\), \(L\) đồng phẳng và tứ giác \(IJKL\) là hình bình hành.

b) Chứng minh rằng \(JL\parallel {\rm{CD}}\).

c) Xác định giao tuyến của hai mặt phẳng \(\left( {IJKL} \right)\) và \(\left( {SCD} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 18 trang 100 sách bài tập toán 11 - Cánh diều 1

a) Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(BC\), \(CD\), \(DA\).

Chứng minh rằng \(MNPQ\) là hình bình hành. Chứng minh rằng \(IJ\parallel LK\) và \(IJ = LK\), để suy ra tứ giác \(IJLK\) là hình bình hành.

b) Chứng minh \(JL\) và \(CD\) cùng song song với \(NQ\), từ đó suy ra \(JL\parallel CD\).

c) Từ kết quả câu b, và sử dụng tính chất “Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó, hoặc trùng với một trong hai đường thẳng đó” để tìm giao tuyến của hai mặt phẳng \(\left( {IJKL} \right)\) và \(\left( {SCD} \right)\).

Lời giải chi tiết

a) Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(BC\), \(CD\), \(DA\).

Ta có \(M\) là trung điểm của \(AB\), \(N\) là trung điểm của \(BC\), nên \(MN\) là đường trung bình của tam giác \(ABC\). Suy ra \(MN\parallel AC\) và \(MN = \frac{1}{2}AC\).

Tương tự ta có \(PQ\parallel AC\) và \(PQ = \frac{1}{2}AC\).

Suy ra \(MN\parallel PQ\) và \(MN = PQ\). Vậy tứ giác \(MNPQ\) là hình bình hành.

Giải bài 18 trang 100 sách bài tập toán 11 - Cánh diều 2

Ta có \(I\) là trọng tâm của tam giác \(SAB\), nên suy ra \(I \in SM\) và \(\frac{{SI}}{{SM}} = \frac{2}{3}\).

Chứng minh tương tự ta cũng có \(J \in SN\) và \(\frac{{SJ}}{{SN}} = \frac{2}{3}\).

Tam giác \(SMN\) có \(\frac{{SI}}{{SM}} = \frac{{SJ}}{{SN}} = \frac{2}{3}\), theo hệ quả của định lí Thales ta suy ra \(IJ\parallel MN\) và \(\frac{{IJ}}{{MN}} = \frac{2}{3}\).

Chứng minh tương tự ta cũng có \(LK\parallel PQ\) và \(\frac{{LK}}{{PQ}} = \frac{2}{3}\).

Từ đó ta suy ra \(IJ\parallel LK\) và \(IJ = LK\). Vậy bốn điểm \(I\), \(J\), \(K\), \(L\) đồng phẳng và tứ giác \(IJLK\) là hình bình hành.

b) Ta có \(L\) là trọng tâm của tam giác \(SAD\), nên suy ra \(L \in SQ\) và \(\frac{{SL}}{{SQ}} = \frac{2}{3}\).

Suy ra \(\frac{{SL}}{{SQ}} = \frac{{SJ}}{{SN}}\), tức là \(JL\parallel NQ\).

Mặt khác \(N\) là trung điểm của \(BC\),\(Q\) là trung điểm của \(DA\) nên suy ra \(NQ\parallel CD\).

Vậy \(JL\parallel CD\).

c) Xét hai mặt phẳng \(\left( {IJKL} \right)\)và \(\left( {SCD} \right)\), ta có \(JL\parallel CD\), \(JL \in \left( {IJKL} \right)\), \(CD \in \left( {SCD} \right)\).

Hơn nữa \(K \in \left( {IJKL} \right) \cap \left( {SCD} \right)\) và \(K \notin JL\), \(K \notin CD\)

Xét hai mặt phẳng \(\left( {IJKL} \right)\)và \(\left( {SCD} \right)\), ta có \(K \in \left( {IJKL} \right) \cap \left( {SCD} \right)\), tức là \(K\) nằm trên giao tuyến của hai mặt phẳng đó. Hơn nữa, \(K \notin JL\), \(K \notin CD\), nên \(JL\) và \(CD\) không là giao tuyến của hai mặt phẳng trên.

Mặt khác, ta có \(JL\parallel CD\), \(JL \in \left( {IJKL} \right)\), \(CD \in \left( {SCD} \right)\) nên giao tuyến của \(\left( {IJKL} \right)\)và \(\left( {SCD} \right)\) là một đường thẳng đi qua \(K\) và song song với \(CD\). Trên hình vẽ, giao tuyến của chúng là đường thẳng \(EF\) đi qua \(K\) và song song với \(CD\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 18 trang 100 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng toán math. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 18 trang 100 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 18 trang 100 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Bài tập này thường tập trung vào việc xác định vị trí tương đối giữa đường thẳng và mặt phẳng, tìm giao điểm, góc giữa đường thẳng và mặt phẳng, và các bài toán liên quan đến khoảng cách.

Nội dung chi tiết bài 18

Bài 18 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định vị trí tương đối giữa đường thẳng và mặt phẳng. Để giải quyết dạng bài này, học sinh cần nắm vững các điều kiện để đường thẳng song song, cắt hoặc nằm trong mặt phẳng.
  • Dạng 2: Tìm giao điểm của đường thẳng và mặt phẳng. Việc tìm giao điểm đòi hỏi học sinh phải giải hệ phương trình, sử dụng phương pháp tọa độ không gian.
  • Dạng 3: Tính góc giữa đường thẳng và mặt phẳng. Công thức tính góc giữa đường thẳng và mặt phẳng là một công cụ quan trọng cần được ghi nhớ và áp dụng linh hoạt.
  • Dạng 4: Tính khoảng cách từ một điểm đến mặt phẳng. Công thức tính khoảng cách này thường được sử dụng trong các bài toán thực tế và đòi hỏi sự chính xác trong tính toán.

Phương pháp giải bài tập hiệu quả

Để giải bài tập 18 trang 100 sách bài tập Toán 11 - Cánh Diều một cách hiệu quả, bạn nên:

  1. Nắm vững lý thuyết: Hiểu rõ các định nghĩa, định lý và công thức liên quan đến đường thẳng và mặt phẳng trong không gian.
  2. Phân tích đề bài: Đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán.
  3. Vẽ hình: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra phương pháp giải phù hợp.
  4. Sử dụng công thức: Áp dụng các công thức đã học để giải quyết bài toán một cách chính xác.
  5. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính đúng đắn.

Ví dụ minh họa

Ví dụ: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Tìm giao điểm của d và (P).

Giải:

Thay phương trình tham số của d vào phương trình (P), ta được:

2(1 + t) - (2 - t) + (3 + 2t) - 5 = 0

2 + 2t - 2 + t + 3 + 2t - 5 = 0

5t - 2 = 0

t = 2/5

Thay t = 2/5 vào phương trình tham số của d, ta được:

x = 1 + 2/5 = 7/5

y = 2 - 2/5 = 8/5

z = 3 + 2(2/5) = 19/5

Vậy giao điểm của d và (P) là (7/5, 8/5, 19/5).

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập, bạn nên luyện tập thêm với các bài tập tương tự trong sách bài tập và các đề thi thử. Giaitoan.edu.vn cung cấp nhiều bài tập luyện tập khác với các mức độ khó khác nhau để bạn có thể rèn luyện và nâng cao khả năng của mình.

Kết luận

Bài 18 trang 100 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn hiểu rõ hơn về các khái niệm và phương pháp giải toán liên quan đến đường thẳng và mặt phẳng trong không gian. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11