Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 24 trang 15 Sách bài tập Toán 11 - Cánh Diều. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác và đầy đủ nhất, đồng thời giải thích cặn kẽ từng bước để bạn có thể tự tin giải các bài tập tương tự.
Rút gọn biểu thức \(A = \frac{{\sin x + \sin 2x + \sin 3x}}{{\cos x + \cos 2x + \cos 3x}}\) ta được kết quả là:
Đề bài
Rút gọn biểu thức \(A = \frac{{\sin x + \sin 2x + \sin 3x}}{{\cos x + \cos 2x + \cos 3x}}\) ta được kết quả là:
A. \(\tan x\)
B. \(\tan 3x\)
C. \(\tan 2x\)
D. \(\tan x + \tan 2x + \tan 3x\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(\sin a + \sin b = 2\sin \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\)
Lời giải chi tiết
Ta có:
\(\begin{array}{l}A = \frac{{\sin x + \sin 2x + \sin 3x}}{{\cos x + \cos 2x + \cos 3x}} = \frac{{\left( {\sin x + \sin 3x} \right) + \sin 2x}}{{\left( {\cos x + \cos 3x} \right) + \cos 2x}} = \frac{{2\sin \frac{{x + 3x}}{2}\cos \frac{{x - 3x}}{2} + \sin 2x}}{{2\cos \frac{{x + 3x}}{2}\cos \frac{{x - 3x}}{2} + \cos 2x}}\\ = \frac{{2\sin 2x.\cos \left( { - x} \right) + \sin 2x}}{{2\cos 2x.\cos \left( { - x} \right) + \cos 2x}} = \frac{{\sin 2x\left[ {2\cos \left( { - x} \right) + 1} \right]}}{{\cos 2x\left[ {2\cos \left( { - x} \right) + 1} \right]}} = \frac{{\sin 2x}}{{\cos 2x}} = \tan 2x\end{array}\)
Đáp án đúng là C.
Bài 24 trang 15 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các đẳng thức vectơ và giải các bài toán liên quan đến hình học không gian.
Bài 24 bao gồm một số câu hỏi và bài tập nhỏ, yêu cầu học sinh:
Cho hai điểm A và B. Hãy xác định điểm M sao cho MA + MB = 0. Giải thích kết quả.
Lời giải:
Điều kiện MA + MB = 0 tương đương với MA = -MB. Điều này có nghĩa là vectơ MA và vectơ MB ngược hướng và có độ dài bằng nhau. Do đó, M là trung điểm của đoạn thẳng AB.
Cho ba điểm A, B, C. Chứng minh rằng AB + BC = AC.
Lời giải:
Theo quy tắc cộng vectơ, nếu ba điểm A, B, C thẳng hàng và B nằm giữa A và C thì AB + BC = AC. Điều này thể hiện mối quan hệ giữa các vectơ trong trường hợp ba điểm thẳng hàng.
Cho hình bình hành ABCD. Chứng minh rằng AB + AD = AC.
Lời giải:
Trong hình bình hành ABCD, ta có AB và AD là hai vectơ kề. Vectơ tổng AB + AD là đường chéo AC của hình bình hành. Do đó, AB + AD = AC.
Bài 24 trang 15 Sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ trong không gian. Việc nắm vững các khái niệm và phương pháp giải bài tập sẽ giúp bạn tự tin giải quyết các bài toán phức tạp hơn trong chương trình học Toán 11.