Logo Header
  1. Môn Toán
  2. Giải bài 34 trang 22 sách bài tập toán 11 - Cánh diều

Giải bài 34 trang 22 sách bài tập toán 11 - Cánh diều

Giải bài 34 trang 22 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 34 trang 22 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 34 trang 22 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Tập xác định của hàm số (y = tan x + frac{1}{{1 + {{cot }^2}x}}) là:

Đề bài

Tập xác định của hàm số \(y = \tan x + \frac{1}{{1 + {{\cot }^2}x}}\) là:

A. \(\mathbb{R} \setminus \left\{ {k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\)

B. \(\mathbb{R} \setminus \left\{ { - \frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\)

C. \(\mathbb{R} \setminus \left\{ {\frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\)

D. \(\mathbb{R} \setminus \left\{ { - \frac{\pi }{4} + k2\pi |k \in \mathbb{Z}} \right\}\)

Phương pháp giải - Xem chi tiếtGiải bài 34 trang 22 sách bài tập toán 11 - Cánh diều 1

Điều kiện xác định của hàm \(\tan x\) là \(\cos x \ne 0\).

Điều kiện xác định của hàm \(\cot x\) là \(\sin x \ne 0\).

Điều kiện xác định của hàm số là \(1 + {\cot ^2}x \ne 0\).

Từ đó kết luận tập xác định của hàm số.

Lời giải chi tiết

Điều kiện xác định của hàm \(\tan x\) là \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).

Điều kiện xác định của hàm \(\cot x\) là \(\sin x \ne 0 \Leftrightarrow x \ne k\pi \left( {k \in \mathbb{Z}} \right)\).

Điều kiện xác định của hàm số là \(1 + {\cot ^2}x \ne 0\). Điều này luôn đúng vì \({\cot ^2}x \ge 0\) với \(\forall x \in \mathbb{R}\), nên \(1 + {\cot ^2}x \ge 1 > 0\) với \(\forall x \in \mathbb{R}\).

Như vậy, tập xác định của hàm số là:

\(D = \mathbb{R} \setminus \left( {\left\{ {k\pi |k \in \mathbb{Z}} \right\} \cup \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}} \right) = \mathbb{R} \setminus \left\{ {k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\).

Đáp án đúng là A.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 34 trang 22 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 34 trang 22 Sách bài tập Toán 11 - Cánh Diều: Hướng dẫn chi tiết

Bài 34 trang 22 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học.

Phần 1: Tóm tắt lý thuyết cần thiết

Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:

  • Vectơ: Một đoạn thẳng có hướng. Vectơ được xác định bởi điểm gốc và điểm cuối.
  • Phép cộng vectơ: Quy tắc hình bình hành hoặc quy tắc tam giác.
  • Phép trừ vectơ:AB - AC = CB
  • Tích của một số với vectơ:k.AB là một vectơ cùng hướng với AB nếu k > 0 và ngược hướng nếu k < 0. Độ dài của k.AB là |k| lần độ dài của AB.

Phần 2: Giải chi tiết bài 34 trang 22 Sách bài tập Toán 11 - Cánh Diều

Để giải bài 34 trang 22, chúng ta cần phân tích kỹ đề bài, xác định các vectơ liên quan, và áp dụng các công thức, quy tắc đã học. Dưới đây là hướng dẫn giải chi tiết cho từng câu hỏi trong bài tập:

Câu a: (Ví dụ minh họa)

Giả sử đề bài yêu cầu chứng minh rằng tứ giác ABCD là hình bình hành. Chúng ta có thể sử dụng tính chất của hình bình hành: AB = DCAD = BC. Để chứng minh điều này, chúng ta cần biểu diễn các vectơ AB, DC, AD, BC theo các vectơ khác đã cho trong đề bài và so sánh chúng.

Câu b: (Ví dụ minh họa)

Giả sử đề bài yêu cầu tìm tọa độ của một điểm M thỏa mãn điều kiện MA + MB = 0. Điều kiện này có nghĩa là M là trung điểm của đoạn thẳng AB. Chúng ta có thể sử dụng công thức tính tọa độ trung điểm để tìm tọa độ của M.

Phần 3: Luyện tập và mở rộng

Sau khi đã nắm vững cách giải bài 34 trang 22, bạn nên luyện tập thêm các bài tập tương tự để củng cố kiến thức. Bạn có thể tìm thấy các bài tập này trong sách bài tập Toán 11 Cánh Diều hoặc trên các trang web học toán online khác.

Bài tập luyện tập:
  • Bài 35 trang 22 Sách bài tập Toán 11 - Cánh Diều
  • Bài 36 trang 22 Sách bài tập Toán 11 - Cánh Diều

Phần 4: Lưu ý khi giải bài tập về vectơ

Khi giải các bài tập về vectơ, bạn cần lưu ý những điều sau:

  • Vẽ hình minh họa để dễ hình dung bài toán.
  • Sử dụng đúng các quy tắc, công thức về vectơ.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải toán.

Phần 5: Ứng dụng của vectơ trong thực tế

Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực như vật lý, kỹ thuật, và khoa học máy tính. Ví dụ, vectơ được sử dụng để biểu diễn vận tốc, gia tốc, lực, và các đại lượng vật lý khác. Trong kỹ thuật, vectơ được sử dụng để mô tả các chuyển động của máy móc và robot.

Bảng tóm tắt các công thức vectơ quan trọng:
Công thứcMô tả
AB + BC = ACQuy tắc tam giác
k.ABTích của một số với vectơ
MA + MB = 0M là trung điểm của AB

Hy vọng rằng hướng dẫn chi tiết này sẽ giúp bạn giải bài 34 trang 22 sách bài tập Toán 11 Cánh Diều một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 11