Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 34 trang 22 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 34 trang 22 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Tập xác định của hàm số (y = tan x + frac{1}{{1 + {{cot }^2}x}}) là:
Đề bài
Tập xác định của hàm số \(y = \tan x + \frac{1}{{1 + {{\cot }^2}x}}\) là:
A. \(\mathbb{R} \setminus \left\{ {k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\)
B. \(\mathbb{R} \setminus \left\{ { - \frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\)
C. \(\mathbb{R} \setminus \left\{ {\frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\)
D. \(\mathbb{R} \setminus \left\{ { - \frac{\pi }{4} + k2\pi |k \in \mathbb{Z}} \right\}\)
Phương pháp giải - Xem chi tiết
Điều kiện xác định của hàm \(\tan x\) là \(\cos x \ne 0\).
Điều kiện xác định của hàm \(\cot x\) là \(\sin x \ne 0\).
Điều kiện xác định của hàm số là \(1 + {\cot ^2}x \ne 0\).
Từ đó kết luận tập xác định của hàm số.
Lời giải chi tiết
Điều kiện xác định của hàm \(\tan x\) là \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).
Điều kiện xác định của hàm \(\cot x\) là \(\sin x \ne 0 \Leftrightarrow x \ne k\pi \left( {k \in \mathbb{Z}} \right)\).
Điều kiện xác định của hàm số là \(1 + {\cot ^2}x \ne 0\). Điều này luôn đúng vì \({\cot ^2}x \ge 0\) với \(\forall x \in \mathbb{R}\), nên \(1 + {\cot ^2}x \ge 1 > 0\) với \(\forall x \in \mathbb{R}\).
Như vậy, tập xác định của hàm số là:
\(D = \mathbb{R} \setminus \left( {\left\{ {k\pi |k \in \mathbb{Z}} \right\} \cup \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}} \right) = \mathbb{R} \setminus \left\{ {k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\).
Đáp án đúng là A.
Bài 34 trang 22 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học.
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
Để giải bài 34 trang 22, chúng ta cần phân tích kỹ đề bài, xác định các vectơ liên quan, và áp dụng các công thức, quy tắc đã học. Dưới đây là hướng dẫn giải chi tiết cho từng câu hỏi trong bài tập:
Giả sử đề bài yêu cầu chứng minh rằng tứ giác ABCD là hình bình hành. Chúng ta có thể sử dụng tính chất của hình bình hành: AB = DC và AD = BC. Để chứng minh điều này, chúng ta cần biểu diễn các vectơ AB, DC, AD, BC theo các vectơ khác đã cho trong đề bài và so sánh chúng.
Giả sử đề bài yêu cầu tìm tọa độ của một điểm M thỏa mãn điều kiện MA + MB = 0. Điều kiện này có nghĩa là M là trung điểm của đoạn thẳng AB. Chúng ta có thể sử dụng công thức tính tọa độ trung điểm để tìm tọa độ của M.
Sau khi đã nắm vững cách giải bài 34 trang 22, bạn nên luyện tập thêm các bài tập tương tự để củng cố kiến thức. Bạn có thể tìm thấy các bài tập này trong sách bài tập Toán 11 Cánh Diều hoặc trên các trang web học toán online khác.
Khi giải các bài tập về vectơ, bạn cần lưu ý những điều sau:
Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực như vật lý, kỹ thuật, và khoa học máy tính. Ví dụ, vectơ được sử dụng để biểu diễn vận tốc, gia tốc, lực, và các đại lượng vật lý khác. Trong kỹ thuật, vectơ được sử dụng để mô tả các chuyển động của máy móc và robot.
Công thức | Mô tả |
---|---|
AB + BC = AC | Quy tắc tam giác |
k.AB | Tích của một số với vectơ |
MA + MB = 0 | M là trung điểm của AB |
Hy vọng rằng hướng dẫn chi tiết này sẽ giúp bạn giải bài 34 trang 22 sách bài tập Toán 11 Cánh Diều một cách dễ dàng và hiệu quả. Chúc bạn học tốt!