Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 5 trang 45 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 5 trang 45 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Trong các dãy số \(\left( {{u_n}} \right)\) được xác định như sau, dãy số giảm là:
Đề bài
Trong các dãy số \(\left( {{u_n}} \right)\) được xác định như sau, dãy số giảm là:
A. \({u_n} = \frac{{3n - 1}}{{n + 1}}\)
B. \({u_n} = {n^3}\)
C. \({u_n} = \frac{1}{{{3^{n + 1}}}}\)
D. \({u_n} = \sqrt n \)
Phương pháp giải - Xem chi tiết
Sử dụng các cách xác định dãy số tăng hay giảm: Cho dãy số \(\left( {{u_n}} \right)\).
Cách 1: Xét hiệu \(H = {u_{n + 1}} - {u_n}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) giảm khi \(H < 0\) với \(\forall n \in {\mathbb{N}^*}\).
Cách 2: Nếu \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\), xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) giảm khi \(T < 1\) với \(\forall n \in {\mathbb{N}^*}\).
Lời giải chi tiết
a) Xét hiệu:
\(H = {u_{n + 1}} - {u_n} = \frac{{3\left( {n + 1} \right) - 1}}{{\left( {n + 1} \right) + 1}} - \frac{{3n - 1}}{{n + 1}} = \frac{{3n + 2}}{{n + 2}} - \frac{{3n - 1}}{{n + 1}} = \frac{{\left( {3n + 2} \right)\left( {n + 1} \right) - \left( {3n - 1} \right)\left( {n + 2} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\)
\( = \frac{{\left( {3{n^2} + 5n + 2} \right) - \left( {3{n^2} + 5n - 2} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} = \frac{4}{{\left( {n + 1} \right)\left( {n + 2} \right)}} > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Do đó dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{3n - 1}}{{n + 1}}\) không là dãy số giảm.
b) Xét hiệu:
\(H = {u_{n + 1}} - {u_n} = {\left( {n + 1} \right)^3} - {n^3} = {n^3} + 3{n^2} + 3n + 1 - {n^3} = 3{n^2} + 3n + 1\).
Do \(3{n^2} + 3n + 1 > 0\) với \(\forall n \in {\mathbb{N}^*}\), nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {n^3}\) không là dãy số giảm.
c) Ta nhận thấy \({u_n} = \frac{1}{{{3^{n + 1}}}} > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{1}{{{3^{\left( {n + 1} \right) + 1}}}}:\frac{1}{{{3^{n + 1}}}} = \frac{{{3^{n + 1}}}}{{{3^{n + 2}}}} = \frac{1}{3}\)
Do \(T = \frac{1}{3} < 1\) với \(\forall n \in {\mathbb{N}^*}\), nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{{{3^{n + 1}}}}\) là dãy số giảm.
d) Ta nhận thấy \({u_n} = \sqrt n > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\sqrt {n + 1} }}{{\sqrt n }} = \sqrt {\frac{{n + 1}}{n}} = \sqrt {1 + \frac{1}{n}} \)
Do \(T = \sqrt {1 + \frac{1}{n}} > \sqrt 1 = 11\) với \(\forall n \in {\mathbb{N}^*}\), nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{{{3^{n + 1}}}}\) không là dãy số giảm.
Đáp án đúng là C.
Bài 5 trang 45 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này tập trung vào việc vận dụng các kiến thức về đồ thị hàm số lượng giác, đặc biệt là hàm số sin, cosin, tang và cotang để giải quyết các bài toán thực tế. Việc nắm vững kiến thức nền tảng và kỹ năng vẽ đồ thị là yếu tố then chốt để hoàn thành tốt bài tập này.
Bài 5 bao gồm một số câu hỏi và bài tập nhỏ, yêu cầu học sinh:
Để xác định các yếu tố của đồ thị hàm số y = 2sin(x - π/3), ta cần phân tích hàm số theo dạng tổng quát y = A sin(Bx + C). Trong trường hợp này:
Vậy, đồ thị hàm số có biên độ là 2, chu kỳ là 2π và pha ban đầu là -π/3.
Để vẽ đồ thị hàm số y = 2sin(x - π/3), ta thực hiện các bước sau:
Kết quả là đồ thị hàm số y = 2sin(x - π/3) có dạng sóng sin với biên độ 2, chu kỳ 2π và dịch chuyển sang phải một đoạn π/3.
Tập xác định của hàm số y = 2sin(x - π/3) là tập hợp tất cả các số thực, tức là D = ℝ. Tập giá trị của hàm số là [-2, 2], vì -1 ≤ sin(x - π/3) ≤ 1, suy ra -2 ≤ 2sin(x - π/3) ≤ 2.
Ngoài bài 5 trang 45, sách bài tập Toán 11 Cánh Diều còn có nhiều bài tập tương tự về hàm số lượng giác. Để giải quyết các bài tập này, bạn cần:
Khi giải bài tập về hàm số lượng giác, bạn cần chú ý:
Bài 5 trang 45 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn trong việc giải bài tập và đạt kết quả tốt trong môn Toán.