Logo Header
  1. Môn Toán
  2. Giải bài 58 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 58 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 58 trang 50 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 58 trang 50 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 58 trang 50 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Số nghiệm của phương trình \(\log \left( {{x^2} - 7x + 12} \right) = \log \left( {2x - 8} \right)\) là:

Đề bài

Số nghiệm của phương trình \(\log \left( {{x^2} - 7x + 12} \right) = \log \left( {2x - 8} \right)\) là:

A. \(0.\)

B. \(1.\)

C. \(2.\)

D. \(3.\)

Phương pháp giải - Xem chi tiếtGiải bài 58 trang 50 sách bài tập toán 11 - Cánh diều 1

Với \(a > 0,{\rm{ }}a \ne 1\) thì \({\log _a}f\left( x \right) = {\log _a}g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f\left( x \right) > 0{\rm{ hoặc }}g\left( x \right) > 0.\end{array} \right.\)

Lời giải chi tiết

\(\begin{array}{l}\log \left( {{x^2} - 7x + 12} \right) = \log \left( {2x - 8} \right) \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 7x + 12 = 2x - 8\\2x - 8 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 9x + 20 = 0\\x > 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 4} \right)\left( {x - 5} \right) = 0\\x > 4\end{array} \right. \Leftrightarrow x = 5.\end{array}\)

Vậy phương trình đã cho có 1 nghiệm.

Đáp án B.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 58 trang 50 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 58 trang 50 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 58 trang 50 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và xác định mối quan hệ vuông góc giữa các vectơ.

Nội dung chi tiết bài 58 trang 50

Bài 58 bao gồm một số câu hỏi và bài tập khác nhau, yêu cầu học sinh:

  • Tính tích vô hướng của hai vectơ cho trước.
  • Tìm góc giữa hai vectơ.
  • Xác định điều kiện để hai vectơ vuông góc.
  • Vận dụng các tính chất của tích vô hướng để chứng minh các đẳng thức vectơ.

Hướng dẫn giải chi tiết

Để giải quyết bài 58 trang 50 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa tích vô hướng của hai vectơ:a.b = |a||b|cos(θ), trong đó θ là góc giữa hai vectơ a và b.
  2. Các tính chất của tích vô hướng:a.b = b.a, (ka).b = k(a.b), a.(b+c) = a.b + a.c.
  3. Điều kiện hai vectơ vuông góc:a ⊥ b ⇔ a.b = 0.

Ví dụ minh họa

Ví dụ 1: Cho hai vectơ a = (1; 2; 3)b = (-2; 1; 0). Tính tích vô hướng của a và b.

Giải:a.b = (1)(-2) + (2)(1) + (3)(0) = -2 + 2 + 0 = 0. Vậy a ⊥ b.

Lưu ý quan trọng

Khi giải các bài toán liên quan đến tích vô hướng, bạn cần chú ý đến việc:

  • Sử dụng đúng công thức tính tích vô hướng.
  • Áp dụng các tính chất của tích vô hướng một cách linh hoạt.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức và kỹ năng giải toán, bạn có thể tự giải các bài tập tương tự sau:

  • Bài 59 trang 50 sách bài tập Toán 11 Cánh Diều.
  • Bài 60 trang 50 sách bài tập Toán 11 Cánh Diều.

Kết luận

Bài 58 trang 50 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp bạn hiểu sâu hơn về tích vô hướng của hai vectơ. Hy vọng rằng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!

Bảng tóm tắt công thức

Công thứcMô tả
a.b = |a||b|cos(θ)Tích vô hướng của hai vectơ
a ⊥ b ⇔ a.b = 0Điều kiện hai vectơ vuông góc

Tài liệu, đề thi và đáp án Toán 11