Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 22 trang 73 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu nhất, đồng thời giải thích cặn kẽ các khái niệm liên quan để bạn có thể hiểu sâu sắc hơn về bài học.
Cho hàm số \(y = {x^2} + 3x\) có đồ thị \(\left( C \right)\).
Đề bài
Cho hàm số \(y = {x^2} + 3x\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có:
a) Hoành độ bằng \( - 1;\)
b) Tung độ bằng \(4.\)
Phương pháp giải - Xem chi tiết
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm x0 thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)
Lời giải chi tiết
Ta có:\(f'\left( x \right) = {\left( {{x^2} + 3x} \right)^\prime } = 2x + 3.\)
a) Gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị có hoành độ bằng \( - 1.\)
\( \Rightarrow {x_0} = - 1;{\rm{ }}{y_0} = - 2 \Rightarrow M\left( { - 1; - 2} \right).\)
\( \Rightarrow f'\left( { - 1} \right) = 2.\left( { - 1} \right) + 3 = 1.\)
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( { - 1; - 2} \right)\) là:
\(y = f'\left( { - 1} \right)\left( {x - \left( { - 1} \right)} \right) + f\left( { - 1} \right) \Leftrightarrow y = 1.\left( {x + 1} \right) - 2 \Leftrightarrow y = x - 1.\)
b) Gọi \(N\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị có tung độ bằng \(4.\)
\( \Rightarrow {y_0} = 4 \Rightarrow {x_0}^2 + 3{x_0} = 4 \Rightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} = - 4\end{array} \right. \Rightarrow \left[ \begin{array}{l}{N_1}\left( {1;4} \right)\\{N_2}\left( { - 4;4} \right)\end{array} \right.\)
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \({N_1}\left( {1;4} \right)\) là:
\(y = f'\left( 1 \right)\left( {x - 1} \right) + f\left( 1 \right) \Leftrightarrow y = 5\left( {x - 1} \right) + 4 \Leftrightarrow y = 5x - 1.\)
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \({N_2}\left( { - 4;4} \right)\) là:
\(y = f'\left( { - 4} \right)\left( {x + 4} \right) + f\left( { - 4} \right) \Leftrightarrow y = - 5\left( {x + 4} \right) + 4 \Leftrightarrow y = - 5x - 16.\)
Bài 22 trang 73 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học không gian.
Bài 22 thường bao gồm các dạng bài tập sau:
Để giải bài 22 trang 73 sách bài tập Toán 11 Cánh Diều, chúng ta cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho từng phần của bài tập (giả sử bài tập có nhiều phần):
Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính góc giữa hai vectơ a và b.
Giải:
1. Tính tích vô hướng a.b = (1)(-2) + (2)(1) + (3)(0) = -2 + 2 + 0 = 0
2. Tính độ dài của vectơ a và b:
|a| = √(1² + 2² + 3²) = √14
|b| = √((-2)² + 1² + 0²) = √5
3. Tính cosin góc giữa hai vectơ:
cos(θ) = (a.b) / (|a||b|) = 0 / (√14 * √5) = 0
4. Suy ra θ = 90°. Vậy hai vectơ a và b vuông góc với nhau.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và SA vuông góc với mặt phẳng (ABCD). Tính góc giữa hai vectơ SA và SC.
Giải:
(Giải thích chi tiết các bước giải, sử dụng các công thức và kiến thức đã học)
Sách giáo khoa Toán 11 - Cánh Diều
Sách bài tập Toán 11 - Cánh Diều
Các trang web học Toán online uy tín
Bài 22 trang 73 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp củng cố kiến thức về vectơ trong không gian. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán tương tự.