Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 43 trang 83 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Cho tam giác \({T_1}\) có diện tích bằng 1. Giả sử có tam giác \({T_2}\) đồng dạng với tam giác \({T_1}\)
Đề bài
Cho tam giác \({T_1}\) có diện tích bằng 1. Giả sử có tam giác \({T_2}\) đồng dạng với tam giác \({T_1}\), tam giác \({T_3}\) đồng dạng với tam giác \({T_2}\), …, tam giác \({T_n}\) đồng dạng với tam giác \({T_{n - 1}}\) với tỉ số đồng dạng \(\frac{1}{k}{\rm{ }}\left( {k > 1} \right)\). Khi \(n\) tiến tới vô cùng, tính tổng diện tích của tất cả các tam giác theo \(k\).
Phương pháp giải - Xem chi tiết
Hai tam giác đồng dạng với tỉ số đồng dạng \(\frac{1}{k}\) thì tỉ số diện tích của hai tam giác đó là \(\frac{1}{{{k^2}}}\).
Do \(\frac{1}{{{k^2}}} < 1\), nên ta thấy dãy số \(\left( {{u_n}} \right)\) với \({u_n}\) là diện tích tam giác \({T_n}\) là cấp số nhân. Khi \(n\) tiến tới vô cùng, thì tổng diện tích các tam giác đó là tổng của cấp số nhân lùi vô hạn.
Lời giải chi tiết
Xét dãy số \(\left( {{u_n}} \right)\) với \({u_n}\) là diện tích tam giác \({T_n}\).
Nhận xét rằng hai tam giác đồng dạng với tỉ số đồng dạng \(\frac{1}{k}\) thì tỉ số diện tích của hai tam giác đó là \(\frac{1}{{{k^2}}}\). Có nghĩa là, tam giác \({T_n}\) đồng dạng với tam giác \({T_{n - 1}}\) theo tỉ số \(\frac{1}{k}\) thì tỉ số diện tích tam giác \({T_n}\) với tam giác \({T_{n - 1}}\) là \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{1}{{{k^2}}}\).
Suy ra \(\left( {{u_n}} \right)\) là cấp số nhân với \({u_1} = 1\) và \(q = \frac{1}{{{k^2}}}\).
Khi \(n\) tiến tới vô cùng, thì tổng diện tích các tam giác đó là tổng của cấp số nhân lùi vô hạn. Tổng này có giá trị là \(S = \frac{{u{\rm{\_1}}}}{{1 - q}} = \frac{1}{{1 - \frac{1}{{{k^2}}}}} = \frac{1}{{\frac{{{k^2} - 1}}{{{k^2}}}}} = \frac{{{k^2}}}{{{k^2} - 1}}\).
Bài 43 trang 83 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Bài tập này thường tập trung vào việc xác định vị trí tương đối giữa đường thẳng và mặt phẳng, tính góc giữa đường thẳng và mặt phẳng, và giải các bài toán ứng dụng liên quan.
Bài 43 thường bao gồm các dạng bài tập sau:
Để giải bài tập về đường thẳng và mặt phẳng, bạn cần nắm vững các kiến thức sau:
Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài tập. Tuy nhiên, dưới đây là một ví dụ về cách giải một bài tập tương tự:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M là trung điểm của cạnh CD. Chứng minh rằng đường thẳng SM vuông góc với mặt phẳng (ABCD).
Ta có:
Vì CD ⊥ SM và CD ⊥ AD nên CD ⊥ (SAD). Suy ra SM ⊥ (ABCD).
Khi giải bài tập về đường thẳng và mặt phẳng, bạn cần lưu ý những điều sau:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác.
Bài 43 trang 83 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn hiểu sâu hơn về các khái niệm và phương pháp giải bài tập về đường thẳng và mặt phẳng. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả.
Công thức | Mô tả |
---|---|
Góc giữa đường thẳng và mặt phẳng | sin φ = d(O, d) / OA (O là điểm thuộc mặt phẳng, d là đường thẳng, A là điểm bất kỳ trên đường thẳng) |
Điều kiện để đường thẳng vuông góc với mặt phẳng | Đường thẳng vuông góc với mọi đường thẳng nằm trong mặt phẳng |