Logo Header
  1. Môn Toán
  2. Giải bài 28 trang 38 sách bài tập toán 11 - Cánh diều

Giải bài 28 trang 38 sách bài tập toán 11 - Cánh diều

Giải bài 28 trang 38 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 28 trang 38 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Tính:

Đề bài

Tính:

a) \(A = \frac{{{{25}^{{{\log }_5}6}} + {{49}^{{{\log }_7}8}} - 3}}{{{3^{1 + {{\log }_9}4}} + {4^{2 - {{\log }_2}3}} + {5^{{{\log }_{125}}27}}}};\)

b) \(\frac{{{{36}^{{{\log }_6}5}} + {{10}^{1 - \log 2}} - 3{}^{{{\log }_9}36}}}{{{{\log }_2}\left( {{{\log }_2}\sqrt {\sqrt[4]{2}} } \right)}};\)

c) \(C = {\log _{\frac{1}{4}}}\left( {{{\log }_3}4.{{\log }_2}3} \right);\)

d) \(D = {\log _4}2.{\log _6}4.{\log _8}6.\)

Phương pháp giải - Xem chi tiếtGiải bài 28 trang 38 sách bài tập toán 11 - Cánh diều 1

Sử dụng các tính chất của logarit để tính giá trị biểu thức.

Lời giải chi tiết

a) \(A = \frac{{{{25}^{{{\log }_5}6}} + {{49}^{{{\log }_7}8}} - 3}}{{{3^{1 + {{\log }_9}4}} + {4^{2 - {{\log }_2}3}} + {5^{{{\log }_{125}}27}}}} = \frac{{{{\left( {{5^{{{\log }_5}6}}} \right)}^2} + {{\left( {{7^{{{\log }_7}8}}} \right)}^2} - 3}}{{{{3.3}^{{{\log }_{{3^2}}}{2^2}}} + {4^2}.{{\left( {{2^{{{\log }_2}3}}} \right)}^{ - 2}} + {5^{{{\log }_{{5^3}}}{3^3}}}}}\)

\( = \frac{{{6^2} + {8^2} - 3}}{{{{3.3}^{{{\log }_3}2}} + {4^2}{{.3}^{ - 2}} + {5^{{{\log }_5}3}}}} = \frac{{97}}{{3.2 + \frac{{16}}{9} + 3}} = \frac{{97}}{{\frac{{97}}{9}}} = 9.\)

b) \(\frac{{{{36}^{{{\log }_6}5}} + {{10}^{1 - \log 2}} - 3{}^{{{\log }_9}36}}}{{{{\log }_2}\left( {{{\log }_2}\sqrt {\sqrt[4]{2}} } \right)}} = \frac{{{{\left( {{6^{{{\log }_6}5}}} \right)}^2} + 10.{{\left( {{{10}^{\log 2}}} \right)}^{ - 1}} - {3^{{{\log }_{{3^2}}}{6^2}}}}}{{{{\log }_2}\left( {{{\log }_2}{2^{\frac{1}{8}}}} \right)}}\)

\( = \frac{{{5^2} + {{10.2}^{ - 1}} - {3^{{{\log }_3}6}}}}{{{{\log }_2}\frac{1}{8}}} = \frac{{25 + 5 - 6}}{{{{\log }_2}{2^{ - 3}}}} = \frac{{24}}{{ - 3}} = - 8.\)

c) \(C = {\log _{\frac{1}{4}}}\left( {{{\log }_3}4.{{\log }_2}3} \right) = {\log _{{2^{ - 2}}}}\left( {{{\log }_3}{2^2}.{{\log }_2}3} \right) = - \frac{1}{2}{\log _2}\left( {2{{\log }_3}2.{{\log }_2}3} \right)\)

\( = - \frac{1}{2}{\log _2}2 = - \frac{1}{2}.\)

d) \(D = {\log _4}2.{\log _6}4.{\log _8}6 = {\log _{{2^2}}}2.\frac{{{{\log }_2}4}}{{{{\log }_2}6}}.{\log _{{2^3}}}6\)

\( = \frac{1}{2}{\log _2}2.\frac{{{{\log }_2}{2^2}}}{{{{\log }_2}6}}.\frac{1}{3}{\log _2}6 = \frac{1}{2}.1.2.\frac{1}{3} = \frac{1}{3}.\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 28 trang 38 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng đề thi toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 28 trang 38 Sách bài tập Toán 11 - Cánh Diều: Phương pháp tiếp cận chi tiết

Bài 28 trang 38 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Để giải quyết bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về:

  • Định nghĩa hàm số lượng giác: Sin, cosin, tang, cotang và các tính chất của chúng.
  • Giá trị lượng giác của các góc đặc biệt: 0°, 30°, 45°, 60°, 90°.
  • Các công thức lượng giác cơ bản: Công thức cộng, trừ, nhân đôi, chia đôi.
  • Biểu thức lượng giác: Cách biến đổi và rút gọn biểu thức lượng giác.

Phân tích bài toán và phương pháp giải

Trước khi bắt tay vào giải bài tập, hãy đọc kỹ đề bài và xác định rõ yêu cầu. Thông thường, bài tập 28 trang 38 sẽ yêu cầu chúng ta:

  1. Tính giá trị của biểu thức lượng giác: Sử dụng các giá trị lượng giác của các góc đặc biệt và các công thức lượng giác.
  2. Chứng minh đẳng thức lượng giác: Biến đổi vế trái thành vế phải hoặc ngược lại.
  3. Giải phương trình lượng giác: Tìm các giá trị của x thỏa mãn phương trình.

Để giải quyết các bài toán này, chúng ta có thể áp dụng các phương pháp sau:

  • Sử dụng các công thức lượng giác: Thay thế các biểu thức bằng các công thức tương đương để đơn giản hóa bài toán.
  • Biến đổi tương đương: Thực hiện các phép biến đổi đại số để đưa bài toán về dạng quen thuộc.
  • Sử dụng các tính chất của hàm số lượng giác: Ví dụ, sin²x + cos²x = 1.

Lời giải chi tiết bài 28 trang 38 Sách bài tập Toán 11 - Cánh Diều

Bài 28.1: Tính giá trị của biểu thức A = sin(π/3) + cos(π/4) - tan(π/6).

Lời giải:

Ta có:

  • sin(π/3) = √3/2
  • cos(π/4) = √2/2
  • tan(π/6) = 1/√3 = √3/3

Vậy, A = √3/2 + √2/2 - √3/3 = (3√3 + 3√2 - 2√3)/6 = (√3 + 3√2)/6.

Bài 28.2: Chứng minh đẳng thức cos²x - sin²x = cos(2x).

Lời giải:

Ta có:

cos(2x) = cos²x - sin²x (theo công thức lượng giác).

Vậy, cos²x - sin²x = cos(2x) (đpcm).

Bài 28.3: Giải phương trình sin(x) = 1/2.

Lời giải:

Phương trình sin(x) = 1/2 có nghiệm là:

  • x = π/6 + k2π
  • x = 5π/6 + k2π

Với k là số nguyên.

Luyện tập và củng cố kiến thức

Để nắm vững kiến thức và kỹ năng giải toán, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Ngoài ra, bạn có thể tham khảo các bài giảng trực tuyến và các video hướng dẫn giải toán trên giaitoan.edu.vn.

Ứng dụng của kiến thức hàm số lượng giác

Kiến thức về hàm số lượng giác có ứng dụng rộng rãi trong nhiều lĩnh vực của khoa học và kỹ thuật, như:

  • Vật lý: Mô tả các hiện tượng dao động, sóng.
  • Kỹ thuật: Thiết kế các mạch điện, hệ thống điều khiển.
  • Tin học: Xử lý ảnh, âm thanh.
  • Địa lý: Tính toán các góc, khoảng cách trên bản đồ.

Tổng kết

Bài 28 trang 38 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng rằng, với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, bạn sẽ tự tin hơn trong việc giải toán và đạt kết quả tốt trong các bài kiểm tra.

Tài liệu, đề thi và đáp án Toán 11