Logo Header
  1. Môn Toán
  2. Giải bài 37 trang 112 sách bài tập toán 11 - Cánh diều

Giải bài 37 trang 112 sách bài tập toán 11 - Cánh diều

Giải bài 37 trang 112 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 37 trang 112 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.

Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(BC\), \(B'C'\).

Đề bài

Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(BC\), \(B'C'\). Khẳng định nào sau đây là đúng?

A. \(\left( {A'MN} \right)\parallel \left( {ACC'} \right)\)

B. \(\left( {A'BN} \right)\parallel \left( {AC'M} \right)\)

C. \(C'M\parallel \left( {A'B'B} \right)\)

D. \(BN\parallel \left( {ACC'A'} \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 37 trang 112 sách bài tập toán 11 - Cánh diều 1

Sử dụng các tính chất về đường thẳng song song với mặt phẳng, các tính chất về hai mặt phẳng song song.

Lời giải chi tiết

Giải bài 37 trang 112 sách bài tập toán 11 - Cánh diều 2

Ta nhận xét rằng \(A' \in \left( {A'MN} \right)\) và \(A' \in \left( {ACC'A'} \right)\), nên hai mặt phẳng \(\left( {A'MN} \right)\) và \(\left( {ACC'} \right)\) có điểm chung, tức là chúng không song song với nhau.

Xét hai mặt phẳng \(\left( {A'BN} \right)\) và \(\left( {AC'M} \right)\). Do \(M\) và \(N\) lần lượt là trung điểm của \(BC\) và \(B'C'\), nên ta có \(BM = C'N = \frac{1}{2}BC\). Hơn nữa, do \(BC\parallel B'C'\) nên tứ giác \(BMC'N\) là hình bình hành. Suy ra \(BN\parallel C'M\), mà do \(C'M \subset \left( {AC'M} \right)\) nên \(BN\parallel \left( {AC'M} \right)\).

Mặt khác, vì \(M\) và \(N\) lần lượt là trung điểm của \(BC\) và \(B'C'\) nên \(MN\parallel BB'\) và \(MN = BB'\). Do \(ABC.A'B'C'\) là lăng trụ tam giác, nên \(BB'\parallel AA'\) và \(BB' = AA'\). Từ đó ta có \(MN = AA'\) và \(MN\parallel AA'\). Điều này có nghĩa tứ giác \(A'NMA\) là hình bình hành. Suy ra \(A'N\parallel AM\). Do \(AM \subset \left( {AC'M} \right)\) nên \(A'N\parallel \left( {AC'M} \right)\). Vậy \(\left( {A'BN} \right)\parallel \left( {AC'M} \right)\).

Xét mặt phẳng \(\left( {BCC'B'} \right)\), ta thấy rằng \(BB'\) và \(CM\) cắt nhau, mà do \(BB' \subset \left( {A'B'B} \right)\) nên \(CM\) và \(\left( {A'B'B} \right)\) có điểm chung, tức là chúng không song song với nhau.

Chứng minh tương tự, ta cũng suy ra \(BN\) và \(\left( {ACC'A'} \right)\) không song song với nhau.

Đáp án đúng là B.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 37 trang 112 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng học toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 37 trang 112 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 37 trang 112 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học không gian.

Nội dung bài tập

Bài 37 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính góc giữa hai vectơ. Học sinh cần sử dụng công thức tính cosin góc giữa hai vectơ: cos(α) = (a.b) / (|a||b|), trong đó a và b là hai vectơ, a.b là tích vô hướng của a và b, |a| và |b| là độ dài của vectơ a và b.
  • Dạng 2: Xác định mối quan hệ vuông góc giữa hai vectơ. Hai vectơ a và b vuông góc khi và chỉ khi tích vô hướng của chúng bằng 0 (a.b = 0).
  • Dạng 3: Ứng dụng tích vô hướng vào hình học không gian. Ví dụ, tính độ dài đường cao của hình chóp, tính góc giữa đường thẳng và mặt phẳng.

Lời giải chi tiết bài 37 trang 112

Để giải bài 37 trang 112 sách bài tập Toán 11 - Cánh Diều, bạn cần thực hiện các bước sau:

  1. Bước 1: Xác định các vectơ liên quan. Đọc kỹ đề bài để xác định các vectơ cần sử dụng trong bài toán.
  2. Bước 2: Tính tích vô hướng của các vectơ. Sử dụng công thức tính tích vô hướng để tính tích vô hướng của các vectơ đã xác định.
  3. Bước 3: Vận dụng công thức và kiến thức liên quan. Sử dụng các công thức và kiến thức về tích vô hướng để giải quyết bài toán.
  4. Bước 4: Kiểm tra lại kết quả. Đảm bảo kết quả của bạn là hợp lý và chính xác.

Ví dụ minh họa:

Giả sử bài 37 yêu cầu tính góc giữa hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Ta thực hiện như sau:

  1. Tính tích vô hướng: a.b = (1)*(-2) + (2)*(1) + (3)*(0) = -2 + 2 + 0 = 0
  2. Tính độ dài của vectơ a: |a| = √(1² + 2² + 3²) = √14
  3. Tính độ dài của vectơ b: |b| = √((-2)² + 1² + 0²) = √5
  4. Tính cosin góc giữa hai vectơ: cos(α) = (a.b) / (|a||b|) = 0 / (√14 * √5) = 0
  5. Suy ra góc α = 90°

Mẹo giải bài tập tích vô hướng

  • Nắm vững các công thức tính tích vô hướng, độ dài vectơ, và góc giữa hai vectơ.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng hình vẽ để minh họa bài toán và tìm ra mối liên hệ giữa các vectơ.
  • Kiểm tra lại kết quả sau khi giải xong bài tập.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể luyện tập thêm các bài tập tương tự sau:

  • Bài 38 trang 112 Sách bài tập Toán 11 - Cánh Diều
  • Bài 39 trang 113 Sách bài tập Toán 11 - Cánh Diều
  • Các bài tập về tích vô hướng trong các đề thi thử Toán 11

Kết luận

Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 37 trang 112 sách bài tập Toán 11 - Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 11