Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 68 sách bài tập toán 11 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy logic và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Cho hai dãy số \(\left( {{u_n}} \right)\), \(\left( {{v_n}} \right)\) với \({u_n} = 3 - \frac{4}{{n + 1}}\), \({v_n} = 8 - \frac{5}{{3{n^2} + 2}}\). Tính:
Đề bài
Cho hai dãy số \(\left( {{u_n}} \right)\), \(\left( {{v_n}} \right)\) với \({u_n} = 3 - \frac{4}{{n + 1}}\), \({v_n} = 8 - \frac{5}{{3{n^2} + 2}}\). Tính:
a) \(\lim {u_n}\), \(\lim {v_n}\)
b) \(\lim \left( {{u_n} + {v_n}} \right)\), \(\lim \left( {{u_n} - {v_n}} \right)\), \(\lim \left( {{u_n}.{v_n}} \right)\), \(\lim \frac{{{u_n}}}{{{v_n}}}\)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất về dãy số có giới hạn vô cực.
Sử dụng định lí về giới hạn hữu hạn: Nếu \(\lim {u_n} = a\), \(\lim {v_n} = b\) thì:
\(\lim \left( {{u_n} + {v_n}} \right) = a + b\), \(\lim \left( {{u_n} - {v_n}} \right) = a - b\), \(\lim \left( {{u_n}.{v_n}} \right) = ab\)
Trường hợp \({v_n} \ne 0\) và \(b \ne 0\), ta có \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\)
Lời giải chi tiết
a)
Ta có \(\lim 4 = 4\) và \(\lim \left( {n + 1} \right) = + \infty \), nên \(\lim \frac{4}{{n + 1}} = 0\).
Sử dụng định lí về giới hạn hữu hạn, ta có:
\(\lim {u_n} = \lim \left( {3 - \frac{4}{{n + 1}}} \right) = \lim 3 - \lim \frac{4}{{n + 1}} = 3 - 0 = 3\)
Chứng minh tương tự, ta cũng có:
\(\lim {v_n} = \lim \left( {8 - \frac{5}{{3{n^2} + 2}}} \right) = \lim 8 - \lim \frac{5}{{3{n^2} + 2}} = 8 - 0 = 8\)
b) Theo kết quả câu a, ta có \(\lim {u_n} = 3\), \(\lim {v_n} = 8 \ne 0\).
Sử dụng định lí về giới hạn hữu hạn, ta có:
\(\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n} = 3 + 8 = 11\)
\(\lim \left( {{u_n} - {v_n}} \right) = \lim {u_n} - \lim {v_n} = 3 - 8 = - 5\)
\(\lim \left( {{u_n}.{v_n}} \right) = \lim {u_n}.\lim {v_n} = 3.8 = 24\)
\(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\lim {u_n}}}{{\lim {v_n}}} = \frac{3}{8}\) (do \({v_n} \ne 0\) với \(\forall n \in {\mathbb{N}^*}\))
Bài 7 trang 68 sách bài tập toán 11 - Cánh diều thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách vẽ đồ thị hàm số và giải các phương trình, bất phương trình lượng giác cơ bản.
Bài 7 trang 68 sách bài tập toán 11 - Cánh diều thường bao gồm các dạng bài tập sau:
Để giúp bạn giải bài 7 trang 68 sách bài tập toán 11 - Cánh diều một cách dễ dàng, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi. Dưới đây là lời giải cho một số câu hỏi thường gặp:
Để hàm số y = tan(2x) có nghĩa, điều kiện là cos(2x) ≠ 0. Điều này tương đương với 2x ≠ π/2 + kπ, với k là số nguyên. Suy ra x ≠ π/4 + kπ/2, với k là số nguyên. Vậy tập xác định của hàm số là D = R \ {π/4 + kπ/2, k ∈ Z}.
Vì -1 ≤ sin(x) ≤ 1, suy ra -2 ≤ 2sin(x) ≤ 2. Cộng 1 vào cả ba vế, ta được -1 ≤ 2sin(x) + 1 ≤ 3. Vậy tập giá trị của hàm số là [-1, 3].
Phương trình sin(x) = 1/2 có hai nghiệm trong khoảng [0, 2π) là x = π/6 và x = 5π/6. Nghiệm tổng quát của phương trình là x = π/6 + k2π và x = 5π/6 + k2π, với k là số nguyên.
Để giải bài tập hàm số lượng giác một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ có thể giải bài 7 trang 68 sách bài tập toán 11 - Cánh diều một cách dễ dàng và hiệu quả. Chúc bạn học tốt!