Logo Header
  1. Môn Toán
  2. Giải bài 29 trang 16 sách bài tập toán 11 - Cánh diều

Giải bài 29 trang 16 sách bài tập toán 11 - Cánh diều

Giải bài 29 trang 16 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 29 trang 16 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra và kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 29 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho tam giác (ABC), chứng minh rằng:

Đề bài

Cho tam giác \(ABC\), chứng minh rằng:

a) \(\tan A + \tan B + \tan C = \tan A{\rm{ }}{\rm{. }}\tan B{\rm{ }}{\rm{. }}\tan C\)

(với điều kiện tam giác \(ABC\) không vuông)

b) \(\tan \frac{A}{2}{\rm{ }}{\rm{. }}\tan \frac{B}{2} + \tan \frac{B}{2}{\rm{ }}{\rm{. }}\tan \frac{C}{2} + \tan \frac{C}{2}{\rm{ }}{\rm{. }}\tan \frac{A}{2} = 1\)

Phương pháp giải - Xem chi tiếtGiải bài 29 trang 16 sách bài tập toán 11 - Cánh diều 1

Sử dụng định lí tổng ba góc trong một tam giác: \(A + B + C = \pi \)

Sử dụng công thức \(\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\)

Lời giải chi tiết

Trong tam giác \(ABC\), ta có \(A + B + C = \pi \).

a) Do \(A + B + C = \pi \Rightarrow A + B = \pi - C \Rightarrow \tan \left( {A + B} \right) = \tan \left( {\pi - C} \right)\)

Vì \(\tan \left( {A + B} \right) = \frac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\), \(\tan \left( {\pi - C} \right) = \tan \left( { - C} \right) = - \tan C\), nên:

\(\tan \left( {A + B} \right) = \tan \left( {\pi - C} \right) \Rightarrow \frac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = - \tan C\)

\( \Rightarrow \tan A + \tan B = - \left( {1 - \tan A\tan B} \right)\tan C\)

\( \Rightarrow \tan A + \tan B = - \tan C + \tan A\tan B\tan C \Rightarrow \tan A + \tan B + \tan C = \tan A\tan B\tan C\)

Bài toán được chứng minh.

b) Ta có:

\(A + B + C = \pi \Rightarrow \frac{{A + B + C}}{2} = \frac{\pi }{2} \Rightarrow \frac{{A + B}}{2} = \frac{\pi }{2} - \frac{C}{2} \Rightarrow \tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \tan \left( {\frac{\pi }{2} - \frac{C}{2}} \right)\)Do \(\tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \frac{{\tan \frac{A}{2} + \tan \frac{B}{2}}}{{1 - \tan \frac{A}{2}\tan \frac{B}{2}}}\) và \(\tan \left( {\frac{\pi }{2} - \frac{C}{2}} \right) = \cot \frac{C}{2} = \frac{1}{{\tan \frac{C}{2}}}\), nên:

\(\tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \tan \left( {\frac{\pi }{2} - \frac{C}{2}} \right) \Rightarrow \frac{{\tan \frac{A}{2} + \tan \frac{B}{2}}}{{1 - \tan \frac{A}{2}\tan \frac{B}{2}}} = \frac{1}{{\tan \frac{C}{2}}}\)

\( \Rightarrow \left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)\tan \frac{C}{2} = 1 - \tan \frac{A}{2}\tan \frac{B}{2} \Rightarrow \tan \frac{A}{2}\tan \frac{B}{2} + \tan \frac{B}{2}\tan \frac{C}{2} + \tan \frac{C}{2}\tan \frac{A}{2} = 1\)

Bài toán được chứng minh.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 29 trang 16 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 29 trang 16 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 29 trang 16 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và xác định mối quan hệ vuông góc giữa các vectơ.

Nội dung chi tiết bài 29

Bài 29 bao gồm các dạng bài tập sau:

  • Dạng 1: Tính tích vô hướng của hai vectơ. Bài tập yêu cầu học sinh tính tích vô hướng của hai vectơ cho trước, sử dụng công thức a.b = |a||b|cos(θ), trong đó θ là góc giữa hai vectơ ab.
  • Dạng 2: Xác định góc giữa hai vectơ. Bài tập yêu cầu học sinh xác định góc giữa hai vectơ dựa vào tích vô hướng của chúng. Sử dụng công thức cos(θ) = (a.b) / (|a||b|).
  • Dạng 3: Kiểm tra tính vuông góc của hai vectơ. Bài tập yêu cầu học sinh kiểm tra xem hai vectơ có vuông góc với nhau hay không. Hai vectơ ab vuông góc với nhau khi và chỉ khi tích vô hướng của chúng bằng 0 (a.b = 0).
  • Dạng 4: Ứng dụng tích vô hướng vào hình học không gian. Bài tập yêu cầu học sinh sử dụng tích vô hướng để giải quyết các bài toán liên quan đến tính độ dài cạnh, đường chéo của hình hộp chữ nhật, hình lập phương, và các hình đa diện khác.

Hướng dẫn giải chi tiết từng bài tập

Để giúp bạn hiểu rõ hơn về cách giải bài 29, chúng tôi sẽ trình bày lời giải chi tiết cho từng bài tập trong sách bài tập:

Bài 29.1

Cho hai vectơ a = (1; 2; 3)b = (-2; 1; 0). Tính a.b.

Lời giải:

a.b = (1)(-2) + (2)(1) + (3)(0) = -2 + 2 + 0 = 0

Bài 29.2

Cho hai vectơ a = (2; -1; 1)b = (1; 0; -1). Tính góc θ giữa hai vectơ ab.

Lời giải:

Đầu tiên, tính tích vô hướng a.b = (2)(1) + (-1)(0) + (1)(-1) = 2 + 0 - 1 = 1.

Tiếp theo, tính độ dài của hai vectơ:

|a| = √(2² + (-1)² + 1²) = √6

|b| = √(1² + 0² + (-1)²) = √2

Sử dụng công thức cos(θ) = (a.b) / (|a||b|), ta có:

cos(θ) = 1 / (√6 * √2) = 1 / √12 = √3 / 6

Vậy, θ = arccos(√3 / 6) ≈ 73.22°

Mẹo giải nhanh

Để giải nhanh các bài tập về tích vô hướng, bạn nên nắm vững các công thức và tính chất cơ bản. Đồng thời, hãy luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo

Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 11
  • Các trang web học toán online uy tín
  • Các video bài giảng trên YouTube

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 29 trang 16 sách bài tập Toán 11 Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11