Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 29 trang 16 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra và kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 29 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho tam giác (ABC), chứng minh rằng:
Đề bài
Cho tam giác \(ABC\), chứng minh rằng:
a) \(\tan A + \tan B + \tan C = \tan A{\rm{ }}{\rm{. }}\tan B{\rm{ }}{\rm{. }}\tan C\)
(với điều kiện tam giác \(ABC\) không vuông)
b) \(\tan \frac{A}{2}{\rm{ }}{\rm{. }}\tan \frac{B}{2} + \tan \frac{B}{2}{\rm{ }}{\rm{. }}\tan \frac{C}{2} + \tan \frac{C}{2}{\rm{ }}{\rm{. }}\tan \frac{A}{2} = 1\)
Phương pháp giải - Xem chi tiết
Sử dụng định lí tổng ba góc trong một tam giác: \(A + B + C = \pi \)
Sử dụng công thức \(\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\)
Lời giải chi tiết
Trong tam giác \(ABC\), ta có \(A + B + C = \pi \).
a) Do \(A + B + C = \pi \Rightarrow A + B = \pi - C \Rightarrow \tan \left( {A + B} \right) = \tan \left( {\pi - C} \right)\)
Vì \(\tan \left( {A + B} \right) = \frac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\), \(\tan \left( {\pi - C} \right) = \tan \left( { - C} \right) = - \tan C\), nên:
\(\tan \left( {A + B} \right) = \tan \left( {\pi - C} \right) \Rightarrow \frac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = - \tan C\)
\( \Rightarrow \tan A + \tan B = - \left( {1 - \tan A\tan B} \right)\tan C\)
\( \Rightarrow \tan A + \tan B = - \tan C + \tan A\tan B\tan C \Rightarrow \tan A + \tan B + \tan C = \tan A\tan B\tan C\)
Bài toán được chứng minh.
b) Ta có:
\(A + B + C = \pi \Rightarrow \frac{{A + B + C}}{2} = \frac{\pi }{2} \Rightarrow \frac{{A + B}}{2} = \frac{\pi }{2} - \frac{C}{2} \Rightarrow \tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \tan \left( {\frac{\pi }{2} - \frac{C}{2}} \right)\)Do \(\tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \frac{{\tan \frac{A}{2} + \tan \frac{B}{2}}}{{1 - \tan \frac{A}{2}\tan \frac{B}{2}}}\) và \(\tan \left( {\frac{\pi }{2} - \frac{C}{2}} \right) = \cot \frac{C}{2} = \frac{1}{{\tan \frac{C}{2}}}\), nên:
\(\tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \tan \left( {\frac{\pi }{2} - \frac{C}{2}} \right) \Rightarrow \frac{{\tan \frac{A}{2} + \tan \frac{B}{2}}}{{1 - \tan \frac{A}{2}\tan \frac{B}{2}}} = \frac{1}{{\tan \frac{C}{2}}}\)
\( \Rightarrow \left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)\tan \frac{C}{2} = 1 - \tan \frac{A}{2}\tan \frac{B}{2} \Rightarrow \tan \frac{A}{2}\tan \frac{B}{2} + \tan \frac{B}{2}\tan \frac{C}{2} + \tan \frac{C}{2}\tan \frac{A}{2} = 1\)
Bài toán được chứng minh.
Bài 29 trang 16 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và xác định mối quan hệ vuông góc giữa các vectơ.
Bài 29 bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 29, chúng tôi sẽ trình bày lời giải chi tiết cho từng bài tập trong sách bài tập:
Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính a.b.
Lời giải:
a.b = (1)(-2) + (2)(1) + (3)(0) = -2 + 2 + 0 = 0
Cho hai vectơ a = (2; -1; 1) và b = (1; 0; -1). Tính góc θ giữa hai vectơ a và b.
Lời giải:
Đầu tiên, tính tích vô hướng a.b = (2)(1) + (-1)(0) + (1)(-1) = 2 + 0 - 1 = 1.
Tiếp theo, tính độ dài của hai vectơ:
|a| = √(2² + (-1)² + 1²) = √6
|b| = √(1² + 0² + (-1)²) = √2
Sử dụng công thức cos(θ) = (a.b) / (|a||b|), ta có:
cos(θ) = 1 / (√6 * √2) = 1 / √12 = √3 / 6
Vậy, θ = arccos(√3 / 6) ≈ 73.22°
Để giải nhanh các bài tập về tích vô hướng, bạn nên nắm vững các công thức và tính chất cơ bản. Đồng thời, hãy luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 29 trang 16 sách bài tập Toán 11 Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!