Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 4 trang 65 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 4 trang 65 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:
Đề bài
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:
A. \(y = f\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)
B. \(y = f'\left( {{x_0}} \right)\left( {x + {x_0}} \right) + f\left( {{x_0}} \right).\)
C. \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)
D. \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) - f\left( {{x_0}} \right).\)
Phương pháp giải - Xem chi tiết
Dựa vào lý thuyết để làm
Lời giải chi tiết
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm x0 thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)
Đáp án C.
Bài 4 trang 65 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, các phép biến đổi lượng giác và phương pháp giải phương trình lượng giác cơ bản.
Bài 4 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 4 trang 65, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Chúng ta sẽ bắt đầu bằng việc phân tích đề bài, xác định các kiến thức cần sử dụng và sau đó đưa ra các bước giải cụ thể.
Câu hỏi: Giải phương trình 2sin(x) - 1 = 0.
Lời giải:
Kiến thức về hàm số lượng giác có ứng dụng rộng rãi trong nhiều lĩnh vực của khoa học và kỹ thuật, như:
Hy vọng rằng với lời giải chi tiết và những lời khuyên hữu ích trên, bạn sẽ tự tin hơn khi giải bài 4 trang 65 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt!