Logo Header
  1. Môn Toán
  2. Giải bài 29 trang 81 sách bài tập toán 11 - Cánh diều

Giải bài 29 trang 81 sách bài tập toán 11 - Cánh diều

Giải bài 29 trang 81 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 29 trang 81 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 29 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Xét tính liên tục của các hàm số sau:

Đề bài

Xét tính liên tục của các hàm số sau:

a) \(f\left( x \right) = - {x^2} + \cos x\)

b) \(g\left( x \right) = 3{x^3} + 2 - \frac{3}{{x + 2}}\)

c) \(h\left( x \right) = \frac{{2x + 5}}{{x + 2}} + \frac{{3x - 1}}{{2x - 4}}\)

Phương pháp giải - Xem chi tiếtGiải bài 29 trang 81 sách bài tập toán 11 - Cánh diều 1

Sử dụng tính liên tục của một số hàm sơ cấp cơ bản.

Lời giải chi tiết

a) Ta thấy rằng các hàm số \(y = - {x^2}\) và \(y = \cos x\) đều liên tục trên tập xác định của chúng là \(\mathbb{R}\), nên hàm số \(f\left( x \right) = - {x^2} + \cos x\) liên tục trên \(\mathbb{R}\).

b) Ta có hàm \(y = 3{x^3} + 2\) liên tục trên tập xác định \(\mathbb{R}\), nên nó liên tục trên hai khoảng \(\left( { - \infty , - 2} \right)\) và \(\left( { - 2, + \infty } \right)\).

Hàm số \(y = \frac{3}{{x + 2}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng xác định \(\left( { - \infty , - 2} \right)\) và \(\left( { - 2, + \infty } \right)\).

Như vậy, hàm số \(g\left( x \right) = 3{x^3} + 2 - \frac{3}{{x + 2}}\) liên tục trên hai khoảng \(\left( { - \infty , - 2} \right)\) và \(\left( { - 2, + \infty } \right)\).

c) Hàm số \(y = \frac{{2x + 5}}{{x + 2}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng xác định \(\left( { - \infty , - 2} \right)\) và \(\left( { - 2, + \infty } \right)\). Như vậy, hàm số \(y = \frac{{2x + 5}}{{x + 2}}\) liên tục trên các khoảng \(\left( { - \infty , - 2} \right)\), \(\left( { - 2,2} \right)\) và \(\left( {2, + \infty } \right)\).

Hàm số \(y = \frac{{3x - 1}}{{2x - 4}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng xác định \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\). Như vậy, hàm số \(y = \frac{{3x - 1}}{{2x - 4}}\) liên tục trên các khoảng \(\left( { - \infty , - 2} \right)\), \(\left( { - 2,2} \right)\) và \(\left( {2, + \infty } \right)\).

Vậy hàm số \(h\left( x \right) = \frac{{2x + 5}}{{x + 2}} + \frac{{3x - 1}}{{2x - 4}}\) liên tục trên các khoảng \(\left( { - \infty , - 2} \right)\), \(\left( { - 2,2} \right)\) và \(\left( {2, + \infty } \right)\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 29 trang 81 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng tài liệu toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 29 trang 81 Sách bài tập Toán 11 - Cánh Diều: Phương pháp tiếp cận chi tiết

Bài 29 trang 81 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm và luyện tập thường xuyên.

Phần 1: Tóm tắt lý thuyết cần thiết

Trước khi đi vào giải bài tập cụ thể, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:

  • Đạo hàm của hàm số: Đạo hàm của hàm số f(x) tại điểm x, ký hiệu là f'(x), biểu thị tốc độ thay đổi tức thời của hàm số tại điểm đó.
  • Quy tắc tính đạo hàm:
    • Đạo hàm của hằng số: (c)' = 0
    • Đạo hàm của hàm số lũy thừa: (xn)' = nxn-1
    • Đạo hàm của tổng/hiệu: (u ± v)' = u' ± v'
    • Đạo hàm của tích: (uv)' = u'v + uv'
    • Đạo hàm của thương: (u/v)' = (u'v - uv')/v2
    • Đạo hàm hàm hợp: (f(g(x)))' = f'(g(x)) * g'(x)

Phần 2: Phân tích và giải bài 29 trang 81 Sách bài tập Toán 11 - Cánh Diều

Để giải bài 29, chúng ta cần xác định rõ yêu cầu của bài toán. Thông thường, bài toán sẽ yêu cầu tính đạo hàm của một hàm số cụ thể hoặc tìm điều kiện để hàm số có đạo hàm. Dưới đây là một ví dụ minh họa:

Ví dụ: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Giải:

  1. Áp dụng quy tắc đạo hàm của tổng/hiệu: f'(x) = (3x2)' + (2x)' - (1)'
  2. Áp dụng quy tắc đạo hàm của hàm số lũy thừa: (3x2)' = 6x và (2x)' = 2
  3. Đạo hàm của hằng số: (1)' = 0
  4. Kết hợp lại: f'(x) = 6x + 2 - 0 = 6x + 2

Vậy, đạo hàm của hàm số f(x) = 3x2 + 2x - 1 là f'(x) = 6x + 2.

Phần 3: Luyện tập và mở rộng

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, bạn nên luyện tập thêm với các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Ngoài ra, bạn có thể tìm hiểu thêm về các ứng dụng của đạo hàm trong thực tế, chẳng hạn như tìm cực trị của hàm số, xét tính đơn điệu của hàm số và giải các bài toán tối ưu.

Các dạng bài tập thường gặp:
  • Tính đạo hàm của hàm số đa thức.
  • Tính đạo hàm của hàm số hữu tỉ.
  • Tính đạo hàm của hàm số lượng giác.
  • Tìm đạo hàm cấp hai.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến cực trị và tính đơn điệu.

Phần 4: Lưu ý khi giải bài tập về đạo hàm

Khi giải bài tập về đạo hàm, bạn cần lưu ý một số điều sau:

  • Nắm vững các quy tắc tính đạo hàm.
  • Phân tích kỹ đề bài để xác định rõ yêu cầu.
  • Thực hiện các phép tính một cách cẩn thận và chính xác.
  • Kiểm tra lại kết quả sau khi giải xong.

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 29 trang 81 sách bài tập Toán 11 Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11