Logo Header
  1. Môn Toán
  2. Giải bài 41 trang 83 sách bài tập toán 11 - Cánh diều

Giải bài 41 trang 83 sách bài tập toán 11 - Cánh diều

Giải bài 41 trang 83 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 41 trang 83 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Hàm số \(y = \tan x\) gián đoạn tại bao nhiêu điểm trên khoảng \(\left( {0;2\pi } \right)\)?

Đề bài

Hàm số \(y = \tan x\) gián đoạn tại bao nhiêu điểm trên khoảng \(\left( {0;2\pi } \right)\)?

A. 0

B. 1

C. 2

D. 3

Phương pháp giải - Xem chi tiếtGiải bài 41 trang 83 sách bài tập toán 11 - Cánh diều 1

Hàm số \(y = \tan x\) liên tục trên từng khoảng xác định. Hàm số có tập xác định là \(\mathbb{R} \setminus \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\). Tìm những giá trị làm cho hàm số không xác định trên khoảng \(\left( {0,2\pi } \right)\)

Lời giải chi tiết

Hàm số \(y = \tan x\) liên tục trên từng khoảng xác định. Hàm số có tập xác định là \(\mathbb{R} \setminus \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\). Như vậy, hàm số gián đoạn tại những điểm \(x = \frac{\pi }{2} + k\pi \).

Suy ra, trên khoảng \(\left( {0,2\pi } \right)\), hàm số gián đoạn tại hai điểm \(x = \frac{\pi }{2}\) và \(x = \frac{{3\pi }}{2}\).

Đáp án đúng là C.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 41 trang 83 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 41 trang 83 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 41 trang 83 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến vị trí tương đối giữa đường thẳng và mặt phẳng, khoảng cách từ điểm đến mặt phẳng, và các bài toán ứng dụng khác.

Nội dung bài tập 41

Bài 41 thường bao gồm các dạng bài tập sau:

  • Xác định vị trí tương đối giữa đường thẳng và mặt phẳng: Kiểm tra xem đường thẳng có nằm trong mặt phẳng, song song với mặt phẳng, cắt mặt phẳng hay không.
  • Tính góc giữa đường thẳng và mặt phẳng: Sử dụng công thức tính góc giữa đường thẳng và mặt phẳng dựa trên vectơ chỉ phương của đường thẳng và vectơ pháp tuyến của mặt phẳng.
  • Tính khoảng cách từ điểm đến mặt phẳng: Áp dụng công thức tính khoảng cách từ điểm đến mặt phẳng.
  • Bài toán ứng dụng: Giải các bài toán thực tế liên quan đến đường thẳng và mặt phẳng.

Hướng dẫn giải chi tiết bài 41 trang 83

Để giải bài 41 trang 83 sách bài tập Toán 11 - Cánh Diều một cách hiệu quả, bạn cần:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ các định nghĩa, định lý, công thức liên quan đến đường thẳng và mặt phẳng trong không gian.
  2. Phân tích đề bài: Đọc kỹ đề bài, xác định các yếu tố đã cho và yêu cầu của bài toán.
  3. Lựa chọn phương pháp giải phù hợp: Tùy thuộc vào từng dạng bài tập, bạn có thể sử dụng các phương pháp giải khác nhau, như phương pháp tọa độ, phương pháp vectơ, hoặc phương pháp hình học.
  4. Thực hiện các phép tính chính xác: Đảm bảo rằng các phép tính của bạn là chính xác để có được kết quả đúng.
  5. Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả của bạn để đảm bảo rằng nó hợp lý và phù hợp với đề bài.

Ví dụ minh họa

Ví dụ: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa đường thẳng d và mặt phẳng (P).

Giải:

Vectơ chỉ phương của đường thẳng d là a = (1, -1, 2). Vectơ pháp tuyến của mặt phẳng (P) là n = (2, -1, 1).

Ta có a.n = 1*2 + (-1)*(-1) + 2*1 = 2 + 1 + 2 = 5 ≠ 0. Do đó, đường thẳng d và mặt phẳng (P) cắt nhau.

Lưu ý khi giải bài tập

Khi giải bài tập về đường thẳng và mặt phẳng, bạn cần chú ý đến các điểm sau:

  • Sử dụng đúng công thức và định lý.
  • Biết cách chuyển đổi giữa các dạng phương trình của đường thẳng và mặt phẳng.
  • Vận dụng linh hoạt các kiến thức đã học để giải quyết các bài toán phức tạp.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Cánh Diều
  • Sách bài tập Toán 11 - Cánh Diều
  • Các trang web học Toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 11 trên YouTube

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 41 trang 83 sách bài tập Toán 11 - Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11