Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 20 trang 19 Sách bài tập Toán 11 - Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 20 trang 19 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Trong một ngày bán hàng khuyến mại, cửa hàng để lẫn cả sản phẩm loại I và sản phẩm loại II vào một hộp
Đề bài
Trong một ngày bán hàng khuyến mại, cửa hàng để lẫn cả sản phẩm loại I và sản phẩm loại II vào một hộp, các sản phẩm có hình thức bề ngoài giống nhau và đồng giá. Trong hộp có 10 sản phẩm loại I và 18 sản phẩm loại II. Một người lấy ngẫu nhiên 3 sản phẩm. Tính xác suất của biến cố A: “Trong ba sản phẩm lấy được, có cả sản phẩm loại I và sản phẩm loại II”.
Phương pháp giải - Xem chi tiết
- Xác định số phần tử của không gian mẫu.
- Xác định số phần tử của biến cố.
Lời giải chi tiết
Mỗi cách chọn ngẫu nhiên 3 sản phẩm từ 28 sản phẩm trong hộp cho ta một tổ hợp chập 3 của 28 phần tử. Do đó, không gian mẫu Ω gồm các phần tử chập 3 của 28 phần tử và \(n\left( \Omega \right) = C_{28}^3 = 3276.\)
Xét các biến cố E: “Trong 3 sản phẩm được chọn có 1 sản phẩm loại I và 2 sản phẩm loại II” và F: “Trong 3 sản phẩm được chọn có 2 sản phẩm loại I và 1 sản phẩm loại II”.
Ta có: \(A = E \cup F,{\rm{ }}E \cap F = \emptyset \Rightarrow n\left( A \right) = n\left( E \right) + n\left( F \right).\)
Số các kết quả thuận lợi cho biến cố E là \(n\left( E \right) = C_{10}^1.C_{18}^2 = 1530.\)
Số các kết quả thuận lợi cho biến cố F là \(n\left( F \right) = C_{10}^2.C_{18}^1 = 810.\)
Suy ra số các kết quả thuận lợi cho biến cố A là:
\(n\left( A \right) = n\left( E \right) + n\left( F \right) = 1530 + 810 = 2340.\)
Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{2340}}{{3276}} = \frac{5}{7}.\)
Bài 20 trang 19 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về hàm số lượng giác, phương trình lượng giác, và các tính chất của chúng để giải quyết các bài toán cụ thể.
Bài 20 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 20 trang 19, chúng tôi sẽ trình bày lời giải chi tiết cho từng bài tập:
Đề bài: Xác định tập xác định của hàm số y = √(2 - cos x).
Lời giải: Hàm số y = √(2 - cos x) xác định khi và chỉ khi 2 - cos x ≥ 0. Vì -1 ≤ cos x ≤ 1, nên 2 - cos x ≥ 2 - 1 = 1 > 0 với mọi x. Vậy tập xác định của hàm số là R.
Đề bài: Tìm tập giá trị của hàm số y = 3sin x + 2.
Lời giải: Vì -1 ≤ sin x ≤ 1, nên -3 ≤ 3sin x ≤ 3. Do đó, -3 + 2 ≤ 3sin x + 2 ≤ 3 + 2, tức là -1 ≤ y ≤ 5. Vậy tập giá trị của hàm số là [-1; 5].
Đề bài: Xét tính chẵn, lẻ của hàm số y = cos x + sin2 x.
Lời giải: Ta có f(-x) = cos(-x) + sin2(-x) = cos x + (-sin x)2 = cos x + sin2 x = f(x). Vậy hàm số y = cos x + sin2 x là hàm chẵn.
Để giải nhanh và hiệu quả các bài tập về hàm số lượng giác, bạn nên:
Kiến thức về hàm số lượng giác có ứng dụng rộng rãi trong nhiều lĩnh vực của khoa học và kỹ thuật, như:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 20 trang 19 Sách bài tập Toán 11 - Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!