Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập toán 11 sách Cánh Diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 1 trang 88, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho hình lăng trụ \(ABC.A'B'C'\) có \(ABC\) là tam giác đều và \(ABB'A'\) là hình chữ nhật
Đề bài
Cho hình lăng trụ \(ABC.A'B'C'\) có \(ABC\) là tam giác đều và \(ABB'A'\) là hình chữ nhật. Gọi M là trung điểm của BC (Hình 4).
a) Số đo giữa hai đường thẳng \(AB\) và \(B'C'\) bằng:
A. \({30^0}.\)
B. \({45^0}.\)
C. \({60^0}.\)
D. \({90^0}.\)
b) Số đo giữa hai đường thẳng \(AB\) và \(CC'\) bằng:
A. \({30^0}.\)
B. \({45^0}.\)
C. \({60^0}.\)
D. \({90^0}.\)
c) Số đo giữa hai đường thẳng \(AM\) và \(A'C'\) bằng:
A. \({30^0}.\)
B. \({45^0}.\)
C. \({60^0}.\)
D. \({90^0}.\)
Phương pháp giải - Xem chi tiết
Dựa vào các cách xác định góc giữa hai đường thẳng đã học để làm.
Lời giải chi tiết
a) Do \(ABC\) là tam giác đều nên \(\widehat {ABC} = {60^0}.\)
Ta có: \(BC\)// \(B'C'\) nên \(\left( {AB,B'C'} \right) = \left( {AB,BC} \right) = \widehat {ABC} = {60^0}.\)
Đáp án C.
b) Do \(ABB'A'\) là hình chữ nhật nên \(\widehat {ABB'} = {90^0}.\)
Ta có: \(BB'\)// \(CC'\) nên \(\left( {AB,CC'} \right) = \left( {AB,BB'} \right) = \widehat {ABB'} = {90^0}.\)
Đáp án D.
c) Do \(ABC\) là tam giác đều nên \(\widehat {MAC} = \frac{1}{2}\widehat {BAC} = \frac{1}{2}{.60^0} = {30^0}.\)
Ta có: \(AC\)// \(A'C'\) nên \(\left( {AM,A'C'} \right) = \left( {AM,AC} \right) = \widehat {MAC} = {30^0}.\)
Đáp án A.
Bài 1 trang 88 sách bài tập toán 11 - Cánh diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách xác định tập xác định, tập giá trị, và vẽ đồ thị hàm số. Việc nắm vững các khái niệm này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 1 trang 88 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 1 trang 88, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, đây chỉ là một ví dụ, và bạn có thể áp dụng các phương pháp tương tự để giải các bài tập khác.
Để hàm số y = √(2x - 1) có nghĩa, điều kiện là 2x - 1 ≥ 0. Giải bất phương trình này, ta được x ≥ 1/2. Vậy tập xác định của hàm số là D = [1/2, +∞).
Hàm số y = sin(x) có tập giá trị là [-1, 1]. Điều này có nghĩa là giá trị của sin(x) luôn nằm trong khoảng từ -1 đến 1.
Đồ thị hàm số y = x2 là một parabol có đỉnh tại gốc tọa độ (0, 0) và mở lên trên. Để vẽ đồ thị, bạn có thể chọn một số điểm đặc biệt, như (-1, 1), (0, 0), và (1, 1), sau đó nối các điểm này lại với nhau.
Để giải bài tập hàm số lượng giác một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Để học tập và ôn luyện kiến thức về hàm số lượng giác, bạn có thể tham khảo các tài liệu sau:
Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài 1 trang 88 sách bài tập toán 11 - Cánh diều và các bài tập tương tự. Chúc bạn học tập tốt!