Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 23 trang 15 Sách bài tập Toán 11 - Cánh Diều. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Giá trị của biểu thức \(P = \frac{{\sin \frac{\pi }{9} + \sin \frac{{5\pi }}{9}}}{{\cos \frac{\pi }{9} + \cos \frac{{5\pi }}{9}}}\) bằng:
Đề bài
Giá trị của biểu thức \(P = \frac{{\sin \frac{\pi }{9} + \sin \frac{{5\pi }}{9}}}{{\cos \frac{\pi }{9} + \cos \frac{{5\pi }}{9}}}\) bằng:
A. \(\frac{1}{{\sqrt 3 }}\)
B. \( - \frac{1}{{\sqrt 3 }}\)
C. \(\sqrt 3 \)
D. \( - \sqrt 3 \)
Phương pháp giải - Xem chi tiết
Sử dụng các công thức sau
\(\sin a + \sin b = 2\sin \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\), \(\cos a + \cos b = 2\cos \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\)
Lời giải chi tiết
Ta có:
\(P = \frac{{\sin \frac{\pi }{9} + \sin \frac{{5\pi }}{9}}}{{\cos \frac{\pi }{9} + \cos \frac{{5\pi }}{9}}} = \frac{{2.\sin \frac{{\frac{\pi }{9} + \frac{{5\pi }}{9}}}{2}.\cos \frac{{\frac{\pi }{9} - \frac{{5\pi }}{9}}}{2}}}{{2.\cos \frac{{\frac{\pi }{9} + \frac{{5\pi }}{9}}}{2}.\cos \frac{{\frac{\pi }{9} - \frac{{5\pi }}{9}}}{2}}} = \frac{{2\sin \frac{\pi }{3}\cos \frac{{ - 2\pi }}{9}}}{{2\cos \frac{\pi }{3}\cos \frac{{ - 2\pi }}{9}}}\)
\( = \frac{{\sin \frac{\pi }{3}}}{{\cos \frac{\pi }{3}}} = \tan \frac{\pi }{3} = \sqrt 3 \)
Đáp án đúng là C.
Bài 23 trang 15 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng trong hình học. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các công thức liên quan.
Bài 23 thường bao gồm các dạng bài tập sau:
Để giải bài 23 trang 15 Sách bài tập Toán 11 - Cánh Diều, bạn có thể thực hiện theo các bước sau:
Bài toán: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.
Giải:
Ta có: AB + AC = AB + AC
Vì M là trung điểm của BC nên BM = MC. Do đó, BC = 2BM.
Ta có: AM = AB + BM và AM = AC + CM.
Cộng hai đẳng thức trên, ta được: 2AM = AB + AC + BM + CM = AB + AC + BC.
Vì BM = MC nên BC = BM + MC = 2BM.
Do đó, 2AM = AB + AC.
Khi giải bài tập về vectơ, bạn cần lưu ý những điều sau:
Giaitoan.edu.vn là một website học Toán online uy tín, cung cấp đầy đủ các tài liệu học tập, bài giảng, bài tập và lời giải chi tiết cho các môn Toán từ lớp 6 đến lớp 12. Chúng tôi cam kết mang đến cho bạn những trải nghiệm học tập tốt nhất.
Hãy truy cập Giaitoan.edu.vn để khám phá thêm nhiều tài liệu học tập hữu ích và nâng cao kiến thức Toán học của bạn!