Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 35 trang 78 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra và kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 35 trang 78 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho hàm số \(f\left( x \right) = {x^3} + 4{x^2} + 5.\) Giải bất phương trình
Đề bài
Cho hàm số \(f\left( x \right) = {x^3} + 4{x^2} + 5.\) Giải bất phương trình
\(f'\left( x \right) - f''\left( x \right) \ge 0.\)
Phương pháp giải - Xem chi tiết
Tính \(f'\left( x \right),{\rm{ }}f''\left( x \right)\) để giải bất phương trình .
Lời giải chi tiết
\(f\left( x \right) = {x^3} + 4{x^2} + 5 \Rightarrow f'\left( x \right) = 3{x^2} + 8x \Rightarrow f''\left( x \right) = 6x + 8.\)
Theo đề bài: \(f'\left( x \right) - f''\left( x \right) \ge 0 \Leftrightarrow 3{x^2} + 8x - \left( {6x + 8} \right) \ge 0 \Leftrightarrow 3{x^2} + 2x - 8 \ge 0\)
\(\left( {3x - 4} \right)\left( {x + 2} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge \frac{4}{3}\\x \le - 2\end{array} \right.\)
Tập nghiệm của bất phương trình là: \(\left( { - \infty ; - 2} \right] \cup \left[ {\frac{4}{3}; + \infty } \right).\)
Bài 35 trang 78 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về phép biến hình. Bài tập này tập trung vào việc vận dụng các kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán thực tế.
Bài 35 bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 35 trang 78, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi:
Cho điểm A(1; 2). Tìm tọa độ điểm A' là ảnh của A qua phép tịnh tiến theo vectơ v = (3; -1).
Lời giải:
Sử dụng công thức phép tịnh tiến: A'(x' ; y') = A(x ; y) + v(a ; b) = (x + a ; y + b)
Thay số: A'(1 + 3 ; 2 - 1) = A'(4 ; 1)
Vậy, tọa độ điểm A' là (4; 1).
Cho đường thẳng d: x + 2y - 3 = 0. Tìm phương trình đường thẳng d' là ảnh của d qua phép quay tâm O góc 90°.
Lời giải:
Chọn hai điểm A và B thuộc đường thẳng d. Ví dụ: A(1; 1) và B(3; 0).
Tìm ảnh A' và B' của A và B qua phép quay tâm O góc 90°:
A'(-1; 1) và B'(0; 3).
Tìm phương trình đường thẳng d' đi qua A' và B'.
Phương trình đường thẳng d' là: 3x + y - 2 = 0.
Cho đường tròn (C): (x - 2)² + (y + 1)² = 4. Tìm phương trình đường tròn (C') là ảnh của (C) qua phép đối xứng trục Ox.
Lời giải:
Phép đối xứng trục Ox biến điểm M(x; y) thành điểm M'(x; -y).
Vậy, tâm I(2; -1) của đường tròn (C) biến thành tâm I'(2; 1).
Bán kính R = 2 không đổi qua phép đối xứng trục.
Phương trình đường tròn (C') là: (x - 2)² + (y - 1)² = 4.
Hy vọng rằng với lời giải chi tiết và những lời khuyên hữu ích trên đây, bạn đã có thể tự tin giải bài 35 trang 78 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!