Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 39 trang 22 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các bạn học sinh.
Hàm số \(y = \sin x\) đồng biến trên khoảng:
Đề bài
Hàm số \(y = \sin x\) đồng biến trên khoảng:
A. \(\left( {\frac{{9\pi }}{2};\frac{{11\pi }}{2}} \right)\)
B. \(\left( {\frac{{11\pi }}{2};\frac{{13\pi }}{2}} \right)\)
C. \(\left( {10\pi ;11\pi } \right)\)
D. \(\left( {9\pi ;10\pi } \right)\)
Phương pháp giải - Xem chi tiết
Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) với \(k \in \mathbb{Z}\).
Lời giải chi tiết
Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) với \(k \in \mathbb{Z}\).
Chọn \(k = 3\), ta có hàm số \(y = \sin x\) đồng biến trên khoảng \(\left( {\frac{{11\pi }}{2};\frac{{13\pi }}{2}} \right)\).
Đáp án đúng là B.
Bài 39 trang 22 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về đồ thị hàm số lượng giác, đặc biệt là hàm cosin, để giải quyết các bài toán liên quan đến việc xác định các điểm thuộc đồ thị, tìm tập giá trị, và khảo sát sự biến thiên của hàm số.
Bài 39 bao gồm một số câu hỏi nhỏ, mỗi câu hỏi tập trung vào một khía cạnh khác nhau của hàm số lượng giác. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi của bài 39 trang 22 sách bài tập Toán 11 Cánh Diều:
Để xác định một điểm thuộc đồ thị hàm số, ta thay giá trị x vào phương trình hàm số và tính giá trị y tương ứng. Ví dụ, nếu x = 0, thì y = cos(0) = 1. Vậy điểm (0, 1) thuộc đồ thị hàm số y = cos(x).
Tập giá trị của hàm số y = cos(x) là [-1, 1]. Điều này có nghĩa là giá trị của y luôn nằm trong khoảng từ -1 đến 1, bao gồm cả -1 và 1.
Hàm số y = cos(x) là hàm số chẵn, có chu kỳ là 2π. Hàm số đạt giá trị lớn nhất là 1 khi x = 2kπ (k là số nguyên) và đạt giá trị nhỏ nhất là -1 khi x = (2k + 1)π (k là số nguyên). Hàm số giảm trên các khoảng (0, π) và tăng trên các khoảng (π, 2π).
Để củng cố kiến thức về hàm số lượng giác, bạn có thể làm thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Ngoài ra, bạn cũng có thể tìm hiểu thêm về các ứng dụng của hàm số lượng giác trong thực tế, chẳng hạn như trong vật lý, kỹ thuật và kinh tế.
Bài 39 trang 22 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số lượng giác. Bằng cách nắm vững các kiến thức và phương pháp giải đã trình bày, bạn có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.
Hàm số | Tập giá trị | Chu kỳ |
---|---|---|
y = cos(x) | [-1, 1] | 2π |
y = a.cos(bx + c) + d | [d - |a|, d + |a|] | 2π/|b| |