Chào mừng các em học sinh đến với lời giải chi tiết bài 33 trang 39 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải từng bước một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp thắc mắc một cách nhanh chóng.
Để tính độ tuổi của mẫu vật bằng gỗ, người ta đo độ phóng xạ của \({}_6^{14}C\)
Đề bài
Để tính độ tuổi của mẫu vật bằng gỗ, người ta đo độ phóng xạ của \({}_6^{14}C\) có trong mẫu vật tại thời điểm \(t\)(năm) (so với thời điểm ban đầu \(t = 0\)), sau đó sử dụng công thức tính độ phóng xạ \(H = {H_0}{e^{ - \lambda t}}\) (đơn vị là Becquerel, kí hiệu Bq) với \({H_0}\) là độ phóng xạ ban đầu (tại thời điểm \(t = 0\)); \(\lambda = \frac{{\ln 2}}{T}\) là hằng số phóng xạ, \(T = 5730\)(năm) (Nguồn: Vật lí 12 Nâng cao, NXBGD Việt Nam, 2014). Khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xạ là 0,215 Bq. Biết độ phóng xạ của mẫu gỗ tươi cùng loại là 0,250 Bq. Xác định độ tuổi của mẫu gỗ cổ đó (làm tròn kết quả đến hàng đơn vị).
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính độ phóng xạ \(H = {H_0}{e^{ - \lambda t}}\) để xác định độ tuổi của mẫu gỗ cổ.
Lời giải chi tiết
Theo đề bài: \(H = 0,215{\rm{ Bp}};{\rm{ }}{H_0} = 0,25{\rm{ Bp; }}T = 5730\)(năm).
Từ công thức: \(H = {H_0}{e^{ - \lambda t}} \Leftrightarrow {e^{ - \lambda t}} = \frac{H}{{{H_0}}} \Leftrightarrow - \lambda t = \ln \left( {\frac{H}{{{H_0}}}} \right) \Leftrightarrow - \frac{{\ln 2}}{T}.t = \ln \left( {\frac{H}{{{H_0}}}} \right)\)
\( \Leftrightarrow t = - {\rm{l}}n\left( {\frac{H}{{{H_0}}}} \right).\frac{T}{{\ln 2}} = - \ln \frac{{0,215}}{{0,25}}.\frac{{5730}}{{\ln 2}} \approx 1247\)(năm).
Bài 33 trang 39 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ và các ứng dụng trong hình học không gian.
Bài 33 bao gồm một số câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Để giải quyết bài 33 trang 39 một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Ví dụ 1: Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính tích vô hướng của hai vectơ này.
Giải:a.b = (1)(-2) + (2)(1) + (3)(0) = -2 + 2 + 0 = 0.
Ví dụ 2: Cho hai vectơ a và b có độ dài lần lượt là 3 và 4, và góc giữa chúng là 60 độ. Tính tích vô hướng của hai vectơ này.
Giải:a.b = |a||b|cos(60°) = (3)(4)(1/2) = 6.
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 11 Cánh Diều và các tài liệu học tập khác.
Bài 33 trang 39 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp các em hiểu sâu hơn về tích vô hướng của hai vectơ và các ứng dụng của nó trong hình học không gian. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin giải quyết bài tập này một cách hiệu quả.
Công thức | Mô tả |
---|---|
a.b = |a||b|cos(θ) | Tích vô hướng của hai vectơ |
cos(θ) = (a.b) / (|a||b|) | Tính góc giữa hai vectơ |
|a| = √(x2 + y2 + z2) | Tính độ dài của vectơ |