Logo Header
  1. Môn Toán
  2. Giải bài 59 trang 119 sách bài tập toán 11 - Cánh diều

Giải bài 59 trang 119 sách bài tập toán 11 - Cánh diều

Giải bài 59 trang 119 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 59 trang 119 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 59 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho hình lập phương \(ABCD.A'B'C'D'\) có \(AB = a\).

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\) có \(AB = a\).

a) Chứng minh răng \(C'D \bot \left( {BCD'} \right)\), \(BD' \bot C'D\) và \(\left( {BC'D} \right) \bot \left( {BCD'} \right)\).

b) Tính góc giữa hai đường thẳng \(BD\) và \(A'D'\).

c) Tính góc giữa đường thẳng \(BD\) và mặt phẳng \(\left( {CDD'C'} \right)\).

d) Tính số đo của góc nhị diện \(\left[ {B,DD',C} \right]\).

e) Tính khoảng cách từ điểm \(D\) đến mặt phẳng \(\left( {BCD'} \right)\).

g) Chứng minh \(B'C'\parallel \left( {BCD'} \right)\) và tính khoảng cách giữa đường thẳng \(B'C'\) và mặt phẳng \(\left( {BCD'} \right)\).

h) Tính thể tích của khối tứ diện \(C'BCD\) và tính khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {BC'D} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 59 trang 119 sách bài tập toán 11 - Cánh diều 1

a) Để chứng minh đường thẳng vuông góc với mặt phẳng, ta chứng minh đường thẳng đó vuông góc với 2 đường thẳng bất kỳ cắt nhau trong mặt phẳng.

Để chứng minh 2 mặt phẳng vuông góc, ta cần chỉ là 1 đường thẳng nằm trên mặt phẳng này và vuông góc với mặt phẳng kia.

b) Chỉ ra \(AD\parallel A'D'\), nên góc giữa \(BD\) và \(A'D'\) cũng bằng góc giữa \(BD\) và \(AD\), và bằng \(\widehat {ADB}\).

c) Ta chứng minh \(BC \bot \left( {DCC'D'} \right)\), do đó góc giữa đường thẳng \(BD\) và mặt phẳng \(\left( {DCC'D'} \right)\) là góc \(\widehat {BDC}\).

d) Ta chứng minh \(\widehat {BDC}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,DD',C} \right]\).

e) Gọi \(I\) là giao điểm của \(D'C\) và \(DC'\). Theo câu a, ta có \(DI \bot \left( {BCD'} \right)\), từ đó suy ra khoảng cách từ \(D\) đến \(\left( {BCD'} \right)\) là đoạn thẳng \(DI\).

g) Để chứng minh \(B'C'\parallel \left( {BCD'} \right)\), ta chứng minh \(B'C'\) song song với một đường thẳng trong mặt phẳng \(\left( {BCD'} \right)\). Do \(B'C'\parallel \left( {BCD'} \right)\) nên khoảng cách giữa \(B'C'\) và \(\left( {BCD'} \right)\) bằng khoảng cách từ \(C'\) đến \(\left( {BCD'} \right)\).

Theo câu a, ta có \(IC' \bot \left( {BCD'} \right)\), từ đó suy ra \(C'I\) chính là khoảng cách cần tìm.

h) Công thức tính thể tích khối chóp: \(V = \frac{1}{3}Sh\), với \(S\) là diện tích đáy và \(h\) là chiều cao của khối chóp đó.

Do \(CC' \bot \left( {BCD} \right)\) nên thể tích tứ diện \(C'BCD\) là \(V = \frac{1}{3}CC'.{S_{BCD}}\).

Do thể tích tứ diện \(C'BCD\) cũng có thể được tính bằng công thức \(V = \frac{1}{3}{d_{C,\left( {BC'D} \right)}}.{S_{BC'D}}\), ta suy ra \({d_{C,\left( {BC'D} \right)}} = \frac{{3V}}{{{S_{BC'D}}}}\).

Lời giải chi tiết

Giải bài 59 trang 119 sách bài tập toán 11 - Cánh diều 2

a) Do \(ABCD.A'B'C'D'\) là hình lập phương, nên ta có \(BC \bot \left( {DCC'D'} \right)\), điều này suy ra \(BC \bot C'D\).

Vì \(DCC'D'\) là hình vuông, nên ta có \(C'D \bot CD'\).

Vậy ta có \(BC \bot C'D\), \(C'D \bot CD'\) nên ta có \(C'D \bot \left( {BCD'} \right)\). Ta có điều phải chứng minh.

Do \(C'D \bot \left( {BCD'} \right)\), ta suy ra \(BD' \bot C'D\).

Do \(C'D \bot \left( {BCD'} \right)\), mà \(C'D \subset \left( {BC'D} \right)\),ta suy ra \(\left( {BC'D} \right) \bot \left( {BCD'} \right)\).

b) Dễ thấy rằng do \(ABCD.A'B'C'D'\) là hình lập phương, ta có \(AD\parallel A'D'\), nên góc giữa \(BD\) và \(A'D'\) cũng bằng góc giữa \(BD\) và \(AD\), và bằng \(\widehat {ADB}\).

Do \(ABCD\) là hình vuông, nên \(\widehat {ADB} = {45^o}\).

Vậy góc giữa \(BD\) và \(A'D'\) bằng \({45^o}\).

c) Do \(ABCD.A'B'C'D'\) là hình lập phương, nên ta có \(BC \bot \left( {DCC'D'} \right)\). Điều này suy ra \(C\) là hình chiếu của \(B\) trên \(\left( {DCC'D'} \right)\). Như vậy, góc giữa đường thẳng \(BD\) và mặt phẳng \(\left( {DCC'D'} \right)\) là góc \(\widehat {BDC}\).

Do \(ABCD\) là hình vuông, nên \(\widehat {BDC} = {45^o}\).

Vậy góc giữa đường thẳng \(BD\) và mặt phẳng \(\left( {DCC'D'} \right)\) bằng \({45^o}\).

d) Do \(ABCD.A'B'C'D'\) là hình lập phương, ta suy ra \(DD' \bot \left( {ABCD} \right)\). Điều này dẫn tới \(DD' \bot BD\) và \(DD' \bot CD\). Vậy \(\widehat {BDC}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,DD',C} \right]\). Theo câu c, ta có \(\widehat {BDC} = {45^o}\). Vậy số đo của góc nhị diện \(\left[ {B,DD',C} \right]\) bằng \({45^o}\).

e) Gọi \(I\) là giao điểm của \(D'C\) và \(DC'\). Theo câu a, ta có \(C'D \bot \left( {BCD'} \right)\), nên \(DI \bot \left( {BCD'} \right)\). Vậy khoảng cách từ \(D\) đến \(\left( {BCD'} \right)\) là đoạn thẳng \(DI\).

Vì \(DCC'D'\) là hình vuông cạnh \(a\), ta suy ra \(C'D = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \). Suy ra \(DI = C'I = \frac{{C'D}}{2} = \frac{{a\sqrt 2 }}{2}\).

Vậy khoảng cách từ \(D\) đến \(\left( {BCD'} \right)\) bằng \(\frac{{a\sqrt 2 }}{2}\).

g) Do \(ABCD.A'B'C'D'\) là hình lập phương, ta suy ra \(B'C'\parallel BC\).

Mà \(BC \subset \left( {BCD} \right)\) nên ta suy ra \(B'C'\parallel \left( {BCD'} \right)\).

Vì \(B'C'\parallel \left( {BCD'} \right)\), nên khoảng cách giữa \(B'C'\) và \(\left( {BCD'} \right)\) cũng bằng khoảng cách từ \(C'\) đến \(\left( {BCD'} \right)\).

Theo câu a, ta có \(C'D \bot \left( {BCD'} \right)\), điều này cũng có nghĩa \(C'I \bot \left( {BCD'} \right)\), tức khoảng cách từ \(C'\) đến \(\left( {BCD'} \right)\) là đoạn thẳng \(C'I\). Mà theo câu e, vì \(C'I = \frac{{a\sqrt 2 }}{2}\), ta kết luận rằng khoảng cách giữa \(B'C'\) và \(\left( {BCD'} \right)\) bằng \(\frac{{a\sqrt 2 }}{2}\).

h) Do \(CC' \bot \left( {BCD} \right)\) nên thể tích tứ diện \(C'BCD\) là

\(V = \frac{1}{3}CC'.{S_{BCD}} = \frac{1}{3}CC'.\frac{{BC.CD}}{2} = \frac{{a.a.a}}{6} = \frac{{{a^3}}}{6}\).

Tam giác \(BC'D\) có \(BC' = C'D = BD = a\sqrt 2 \) (do chúng đều là đường chéo của các mặt của hình lập phương) nên tam giác đó đều.

Diện tích tam giác \(BC'D\) bằng \({S_{BC'D}} = \frac{{B{D^2}\sqrt 3 }}{4} = \frac{{{{\left( {a\sqrt 2 } \right)}^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{2}\).

Vì thể tích tứ diện \(C'BCD\) cũng có thể được tính bằng công thức \(V = \frac{1}{3}{d_{C,\left( {BC'D} \right)}}.{S_{BC'D}}\), ta suy ra \({d_{C,\left( {BC'D} \right)}} = \frac{{3.\frac{{{a^3}}}{6}}}{{\frac{{{a^2}\sqrt 3 }}{2}}} = \frac{{a\sqrt 3 }}{3}\).

Vậy khoảng cách từ \(C\) đến mặt phẳng \(\left( {BC'D} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 59 trang 119 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng đề thi toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 59 trang 119 Sách bài tập Toán 11 - Cánh Diều: Phương pháp tiếp cận chi tiết

Bài 59 trang 119 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài, điều quan trọng nhất là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp bạn lựa chọn phương pháp giải phù hợp và tránh sai sót không đáng có.

Các kiến thức cần nắm vững

  • Định nghĩa đạo hàm: Hiểu rõ khái niệm đạo hàm của hàm số tại một điểm và đạo hàm của hàm số.
  • Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản (hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit) và quy tắc tính đạo hàm của tổng, hiệu, tích, thương của các hàm số.
  • Ứng dụng của đạo hàm: Biết cách sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát hàm số, và giải các bài toán liên quan đến tốc độ biến thiên.

Lời giải chi tiết bài 59 trang 119 Sách bài tập Toán 11 - Cánh Diều

(Ở đây sẽ là lời giải chi tiết cho bài 59, bao gồm các bước giải, giải thích rõ ràng từng bước, và các lưu ý quan trọng. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh dễ dàng theo dõi và nắm bắt.)

Ví dụ minh họa (nếu có)

Để giúp bạn hiểu rõ hơn về cách giải bài 59, chúng tôi sẽ cung cấp một ví dụ minh họa cụ thể. Ví dụ này sẽ giúp bạn áp dụng các kiến thức đã học vào thực tế và tự tin hơn trong việc giải các bài toán tương tự.

Các dạng bài tập tương tự

Ngoài bài 59, còn rất nhiều bài tập tương tự trong sách bài tập Toán 11 Cánh Diều. Dưới đây là một số dạng bài tập thường gặp:

  • Bài tập tính đạo hàm của hàm số.
  • Bài tập tìm cực trị của hàm số.
  • Bài tập khảo sát hàm số.
  • Bài tập ứng dụng đạo hàm để giải các bài toán thực tế.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải bài tập đạo hàm một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:

  1. Nắm vững kiến thức cơ bản: Điều này là nền tảng để bạn có thể giải quyết mọi bài toán.
  2. Luyện tập thường xuyên: Càng luyện tập nhiều, bạn càng trở nên thành thạo và tự tin hơn.
  3. Sử dụng các công cụ hỗ trợ: Bạn có thể sử dụng máy tính bỏ túi hoặc các phần mềm toán học để kiểm tra lại kết quả của mình.
  4. Tham khảo các nguồn tài liệu khác: Nếu bạn gặp khó khăn, đừng ngần ngại tham khảo các sách giáo khoa, sách bài tập, hoặc các trang web học toán online.

Tổng kết

Bài 59 trang 119 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc học Toán 11.

Bảng tổng hợp các công thức đạo hàm thường dùng
Hàm số y = f(x)Đạo hàm y' = f'(x)
C (hằng số)0
xnnxn-1
sin xcos x
cos x-sin x
tan x1/cos2x

Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11