Logo Header
  1. Môn Toán
  2. Giải bài 17 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 17 trang 50 sách bài tập toán 11 - Cánh diều

Giải bài 17 trang 50 Sách bài tập Toán 11 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 17 trang 50 Sách bài tập Toán 11 - Cánh Diều. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu nhất, đồng thời giải thích cặn kẽ các khái niệm liên quan để bạn có thể hiểu sâu sắc hơn về bài học.

Viết ba số hạng xen giữa 2 và 22 để được một cấp số cộng có năm số hạng. Ba số hạng đó lần lượt là:

Đề bài

Viết ba số hạng xen giữa 2 và 22 để được một cấp số cộng có năm số hạng. Ba số hạng đó lần lượt là:

A. 7; 12; 17

B. 6; 10; 14

C. 8; 13; 18

D. 6; 12; 18

Phương pháp giải - Xem chi tiếtGiải bài 17 trang 50 sách bài tập toán 11 - Cánh diều 1

Khi viết ba số hạng xen giữa 2 với 22, ta được một cấp số cộng gồm năm số hạng với \({u_1} = 2\), \({u_5} = 22\). Từ đó tính sử dụng công thức \(u_n=u_1+(n-1)d\) ta tính được công sai \(d\) và các số hạng \({u_2}\), \({u_3}\), \({u_4}\)

Lời giải chi tiết

Khi viết ba số hạng xen giữa 2 với 22, ta được một cấp số cộng gồm năm số hạng với \({u_1} = 2\), \({u_5} = 22\).

Mặt khác, ta có \({u_5} = {u_1} + 4d\), nên vì vậy \(d = \frac{{{u_5} - {u_1}}}{4} = \frac{{22 - 2}}{4} = 5\)

Như vậy:

\({u_2} = {u_1} + d = 2 + 5 = 7\), \({u_3} = {u_2} + d = 7 + 5 = 12\), \({u_4} = {u_3} + d = 12 + 5 = 17\)

Đáp án đúng là A.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 17 trang 50 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 17 trang 50 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 17 trang 50 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các công thức liên quan để giải quyết các bài toán cụ thể.

Nội dung chi tiết bài 17 trang 50

Bài 17 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định vectơ: Yêu cầu học sinh xác định các vectơ trong hình vẽ hoặc từ các điểm cho trước.
  • Dạng 2: Thực hiện các phép toán vectơ: Cộng, trừ, nhân vectơ với một số thực.
  • Dạng 3: Chứng minh đẳng thức vectơ: Sử dụng các tính chất của vectơ để chứng minh các đẳng thức cho trước.
  • Dạng 4: Ứng dụng vectơ trong hình học: Chứng minh các tính chất của hình học phẳng, ví dụ như chứng minh hai đường thẳng song song, vuông góc, hoặc chứng minh một điểm nằm trên một đường thẳng.

Lời giải chi tiết bài 17 trang 50

Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài 17 trang 50, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài tập. Lưu ý rằng, trước khi bắt đầu giải bài tập, bạn nên ôn lại các kiến thức lý thuyết liên quan để đảm bảo nắm vững kiến thức nền tảng.

Câu 1: (Ví dụ minh họa)

Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: AB + AC = 2AM

Lời giải:

  1. Áp dụng quy tắc trung điểm, ta có: AM = (AB + AC) / 2
  2. Nhân cả hai vế với 2, ta được: 2AM = AB + AC
  3. Vậy, AB + AC = 2AM (đpcm)

Câu 2: (Ví dụ minh họa)

Cho hình bình hành ABCD. Tìm vectơ AB + AD

Lời giải:

Trong hình bình hành ABCD, AB + AD = AC (quy tắc hình bình hành). Do đó, vectơ AB + AD chính là vectơ AC.

Mẹo giải bài tập vectơ hiệu quả

  • Vẽ hình minh họa: Việc vẽ hình minh họa sẽ giúp bạn hình dung rõ hơn về bài toán và dễ dàng tìm ra hướng giải quyết.
  • Sử dụng quy tắc hình bình hành và quy tắc trung điểm: Đây là hai quy tắc quan trọng trong việc giải các bài tập về vectơ.
  • Biến đổi vectơ một cách linh hoạt: Sử dụng các tính chất của vectơ để biến đổi các biểu thức vectơ một cách linh hoạt, giúp đơn giản hóa bài toán.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 11, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 11 - Cánh Diều
  • Sách bài tập Toán 11 - Cánh Diều
  • Các trang web học Toán online uy tín
  • Các video bài giảng Toán 11 trên YouTube

Kết luận

Hy vọng rằng, với lời giải chi tiết và những lời khuyên hữu ích trên đây, các bạn học sinh sẽ tự tin hơn trong việc giải bài 17 trang 50 Sách bài tập Toán 11 - Cánh Diều. Chúc các bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11