Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 42 trang 23 Sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Xét tính chẵn, lẻ của các hàm số sau:
Đề bài
Xét tính chẵn, lẻ của các hàm số sau:
a) \(y = \sin 2x\)
b) \(y = \left| {\sin x} \right|\)
c) \(y = {\tan ^2}x\)
d) \(y = \sqrt {1 - \cos x} \)
e) \(y = \tan x + \cot x\)
f) \(y = \sin x\cos 3x\)
Phương pháp giải - Xem chi tiết
Các hàm số đã cho đều thoả mãn trên tập xác định \(D\), với \(x \in D\) thì \( - x \in D\).
Với hàm \(f\left( x \right)\), xét \(f\left( { - x} \right)\). Nếu \(f\left( { - x} \right) = f\left( x \right)\) thì \(f\left( x \right)\) là hàm số chẵn; nếu \(f\left( { - x} \right) = - f\left( x \right)\) thì \(f\left( x \right)\) là hàm số lẻ.
Lời giải chi tiết
Các hàm số đã cho đều thoả mãn trên tập xác định \(D\), với \(x \in D\) thì \( - x \in D\).
a) Xét hàm số \(f\left( x \right) = \sin 2x\), ta có:
\(f\left( { - x} \right) = \sin \left[ {2\left( { - x} \right)} \right] = \sin \left( { - 2x} \right) = - \sin 2x = - f\left( x \right)\)
Do đó, hàm số đã cho là hàm số lẻ.
b) Xét hàm số \(f\left( x \right) = \left| {\sin x} \right|\), ta có:
\(f\left( { - x} \right) = \left| {\sin \left( { - x} \right)} \right| = \left| { - \sin x} \right| = \left| {\sin x} \right| = f\left( x \right)\)
Do đó, hàm số đã cho là hàm số chẵn.
c) Xét hàm số \(f\left( x \right) = {\tan ^2}x\) , ta có:
\(f\left( { - x} \right) = {\tan ^2}\left( { - x} \right) = {\left( { - \tan x} \right)^2} = {\tan ^2}x = f\left( x \right)\)
Do đó, hàm số đã cho là hàm số chẵn.
d) Xét hàm số \(f\left( x \right) = \sqrt {1 - \cos x} \) , ta có:
\(f\left( { - x} \right) = \sqrt {1 - \cos \left( { - x} \right)} = \sqrt {1 - \cos x} = f\left( x \right)\)
Do đó, hàm số đã cho là hàm số chẵn.
e) Xét hàm số \(f\left( x \right) = \tan x + \cot x\) , ta có:
\(f\left( { - x} \right) = \tan \left( { - x} \right) + \cot \left( { - x} \right) = - \tan x - \cot x = - f\left( x \right)\)
Do đó, hàm số đã cho là hàm số lẻ.
f) Xét hàm số \(f\left( x \right) = \sin x\cos 3x\) , ta có:
\(f\left( { - x} \right) = \sin \left( { - x} \right)\cos \left[ {3\left( { - x} \right)} \right] = - \sin x\cos \left( { - 3x} \right) = - \sin x\cos 3x = - f\left( x \right)\)
Do đó, hàm số đã cho là hàm số lẻ.
Bài 42 trang 23 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các khái niệm cơ bản như:
Trước khi bắt tay vào giải bài tập, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Sau đó, hãy phân tích các dữ kiện đã cho và tìm ra mối liên hệ giữa chúng. Dựa trên những phân tích đó, bạn có thể lựa chọn phương pháp giải phù hợp.
Thông thường, để giải bài 42 trang 23 Sách bài tập Toán 11 - Cánh Diều, bạn có thể sử dụng các phương pháp sau:
(Ở đây sẽ là lời giải chi tiết cho bài 42, bao gồm các bước giải, giải thích cụ thể và kết luận. Lời giải sẽ được trình bày một cách rõ ràng, dễ hiểu, kèm theo các hình vẽ minh họa nếu cần thiết. Ví dụ:)
Bài 42: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SB và mặt phẳng (ABCD).
Lời giải:
Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC và BD.
Vì SA vuông góc với mặt phẳng (ABCD) nên SA vuông góc với BO.
Xét tam giác SAB vuông tại A, ta có: tan góc SBO = SA/AB = a/a = 1.
Suy ra góc SBO = 45 độ.
Vậy góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 45 độ.
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ trong không gian, bạn có thể tham khảo các bài tập tương tự sau:
Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.
Khi giải bài tập về vectơ trong không gian, bạn cần lưu ý những điều sau:
Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể giải bài 42 trang 23 Sách bài tập Toán 11 - Cánh Diều một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!