Logo Header
  1. Môn Toán
  2. Giải bài 40 trang 55 sách bài tập toán 11 - Cánh diều

Giải bài 40 trang 55 sách bài tập toán 11 - Cánh diều

Giải bài 40 trang 55 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 40 trang 55 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra và kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập 40 trang 55 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho \(\left( {{u_n}} \right)\) là cấp số nhân có \({u_1} + {u_5} = 51\) và \({u_2} + {u_6} = 102\)

Đề bài

Cho \(\left( {{u_n}} \right)\) là cấp số nhân có \({u_1} + {u_5} = 51\) và \({u_2} + {u_6} = 102\)

a) Tính \({u_{10}}\).

b) Số 192 là số hạng thứ mấy của cấp số nhân trên?

c) Số 9216 có là số hạng nào của cấp số nhân trên không?

Phương pháp giải - Xem chi tiếtGiải bài 40 trang 55 sách bài tập toán 11 - Cánh diều 1

a) Ta có \({u_2} + {u_6} = {u_1}q + {u_5}q = q\left( {{u_1} + {u_5}} \right)\), từ đó suy ra \(q = 2\) và \({u_1} = 3\). Từ đó tính được \({u_{10}}\).

b) Gọi \(k\) là vị trí của số 192 trong cấp số nhân trên. Ta cần tìm \(k\) để \(192 = {u_1}.{q^{k - 1}}\). Giải phương trình ta được \(k = 7\).

c) Giả sử 9216 là số thứ \(n\) của cấp số nhân \(\left( {{u_n}} \right)\). Suy ra \(9216 = {u_1}.{q^n}\).

Ta suy ra \({2^{n - 1}} = 3072\). Điều này vô lí vì 3072 chia hết cho 3, và không có số nguyên dương \(n\) nào để \({2^{n - 1}}\) chia hết cho 3.

Lời giải chi tiết

a) Ta có hệ phương trình:

\(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + {q^4}} \right) = 51\\{u_1}q\left( {1 + {q^4}} \right) = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + {q^4}} \right) = 51\\51q = 102\end{array} \right.\)

\(\left\{ \begin{array}{l}{u_1}\left( {1 + {q^4}} \right) = 51\\q = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + {2^4}} \right) = 51\\q = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\q = 2\end{array} \right.\)

Vậy \({u_1} = 3\), \(q = 2\). Suy ra \({u_{10}} = {u_1}{q^9} = {3.2^9} = 1536\).

b) Gọi \(k\) là vị trí của số 192 trong cấp số nhân trên. Ta có \({u_k} = {u_1}.{q^{k - 1}}\).

Ta cần tìm \(k\) để \(192 = {u_1}.{q^{k - 1}}\).

Do \(192 = {3.2^{k - 1}} \Rightarrow {2^{k - 1}} = 64 \Rightarrow k - 1 = 6 \Rightarrow k = 7\).

Vậy 192 là số hạng thứ 7 của cấp số nhân trên.

c) Giả sử 9216 là số thứ \(n\) của cấp số nhân \(\left( {{u_n}} \right)\). Suy ra \(9216 = {u_n} = {u_1}.{q^{n - 1}}\).

\( \Rightarrow {3.2^{n - 1}} = 9216 \Rightarrow {2^{n - 1}} = 3072\).

Vì 3072 chia hết cho 3, và với \(n\) nguyên dương thì \({2^{n - 1}}\) không chia hết cho 3.

Suy ra không tồn tại \(n\) thoả mãn.

Vậy 9216 không là số hạng của cấp số nhân trên.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 40 trang 55 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 40 trang 55 Sách bài tập Toán 11 - Cánh Diều: Hướng dẫn chi tiết

Bài 40 trang 55 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về phép biến hình. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán hình học.

Nội dung bài tập 40 trang 55

Bài tập 40 thường bao gồm các dạng câu hỏi sau:

  1. Xác định ảnh của một điểm hoặc một hình qua một phép biến hình: Yêu cầu học sinh xác định vị trí mới của một điểm hoặc một hình sau khi thực hiện một phép tịnh tiến, phép quay, phép đối xứng trục hoặc phép đối xứng tâm.
  2. Tìm tâm của phép biến hình: Đòi hỏi học sinh phải xác định tâm của phép tịnh tiến, phép quay, phép đối xứng trục hoặc phép đối xứng tâm dựa trên thông tin cho trước.
  3. Chứng minh một hình là ảnh của một hình khác qua một phép biến hình: Yêu cầu học sinh chứng minh rằng một hình là ảnh của một hình khác qua một phép biến hình cụ thể.
  4. Vận dụng phép biến hình để giải quyết các bài toán hình học: Sử dụng các phép biến hình để chứng minh tính chất của các hình, tìm điểm đối xứng, hoặc giải các bài toán liên quan đến diện tích và chu vi.

Lời giải chi tiết bài 40 trang 55

Để giúp bạn hiểu rõ hơn về cách giải bài tập 40 trang 55, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Chúng tôi sẽ sử dụng các công thức và định lý liên quan đến phép biến hình để giải quyết bài toán một cách chính xác và hiệu quả.

Ví dụ minh họa (Giả định một câu hỏi cụ thể trong bài 40)

Câu hỏi: Cho điểm A(1; 2) và phép tịnh tiến theo vectơ v = (3; -1). Tìm ảnh A' của điểm A qua phép tịnh tiến đó.

Lời giải:

Công thức phép tịnh tiến: A'(x'; y') = A(x; y) + v(a; b) = (x + a; y + b)

Áp dụng công thức vào bài toán:

A'(x'; y') = A(1; 2) + v(3; -1) = (1 + 3; 2 - 1) = (4; 1)

Vậy, ảnh A' của điểm A qua phép tịnh tiến theo vectơ v = (3; -1) là A'(4; 1).

Mẹo giải bài tập về phép biến hình

  • Nắm vững định nghĩa và tính chất của các phép biến hình: Hiểu rõ định nghĩa, tính chất và công thức của phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm là điều kiện cần thiết để giải quyết các bài toán liên quan.
  • Vẽ hình minh họa: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng công thức một cách chính xác: Áp dụng các công thức liên quan đến phép biến hình một cách chính xác để đảm bảo tính đúng đắn của kết quả.
  • Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo rằng nó phù hợp với điều kiện của bài toán.

Tài liệu tham khảo hữu ích

Để nâng cao kiến thức và kỹ năng giải toán về phép biến hình, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 chương trình Cánh Diều
  • Sách bài tập Toán 11 chương trình Cánh Diều
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về phép biến hình trên YouTube

Kết luận

Bài 40 trang 55 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức và kỹ năng về phép biến hình. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải quyết các bài toán tương tự. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11