Logo Header
  1. Môn Toán
  2. Giải bài 27 trang 21 sách bài tập toán 11 - Cánh diều

Giải bài 27 trang 21 sách bài tập toán 11 - Cánh diều

Giải bài 27 trang 21 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 27 trang 21 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra và kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 27 trang 21 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Người ta ghi lại tốc độ của 40 xe đạp đi qua một vị trí trên đường. Mẫu số liệu dưới đây ghi lại tốc độ của 40 xe đó (đơn vị: km/h):

Đề bài

Người ta ghi lại tốc độ của 40 xe đạp đi qua một vị trí trên đường. Mẫu số liệu dưới đây ghi lại tốc độ của 40 xe đó (đơn vị: km/h):

Giải bài 27 trang 21 sách bài tập toán 11 - Cánh diều 1

a) Lập bảng tần số ghép nhóm bao gồm cả tần số tích lũy có năm nhóm ứng với năm nửa khoảng: [10 ; 12), [12 ; 14), (14 ; 16), [16 ; 18), [18 ; 20).

b) Xác định các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm trên (làm tròn các kết quả đến hàng phần mười).

Phương pháp giải - Xem chi tiếtGiải bài 27 trang 21 sách bài tập toán 11 - Cánh diều 2

Áp dụng các công thức đã học để xác định các đại lượng tiêu biểu.

Lời giải chi tiết

a) Bảng tần số ghép nhóm cho mẫu số liệu có năm nhóm ứng với năm nửa khoảng

Giải bài 27 trang 21 sách bài tập toán 11 - Cánh diều 3

- Tốc độ trung bình của 40 xe đạp là:

\(\bar x = \frac{{11.8 + 13.12 + 15.9 + 17.7 + 19.4}}{{40}} \approx 14,4\) (km/h).

- Ta có: \(\frac{n}{2} = \frac{{40}}{2} = 20\) mà \(20 = 20 < 29.\) Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.

Xét nhóm 3 là nhóm [14 ; 16) có \(r = 14,{\rm{ }}d = 2,{\rm{ }}{n_3} = 9\) và nhóm 2 là nhóm

[12 ; 14) có \(c{f_2} = 20.\)

Trung vị của mẫu số liệu là:

\({M_e} = r + \left( {\frac{{\frac{n}{2} - c{f_{k - 1}}}}{{{n_k}}}} \right).d = 14 + \left( {\frac{{20 - 20}}{9}} \right).2 = 14\) (km/h).

Tứ phân vị thứ hai của mẫu số liệu là: \({Q_2} = {M_e} = 14\) (km/h).

- Ta có: \(\frac{n}{4} = \frac{{40}}{4} = 10\) mà \(8 < 10 < 13.\) Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.

Xét nhóm 2 là nhóm [12 ; 14) có \(s = 12,{\rm{ }}h = 2,{\rm{ }}{n_2} = 12\) và nhóm 1 là nhóm

[10 ; 12) có \(c{f_1} = 8.\)

Tứ phân vị thứ nhất của mẫu số liệu là:

\({Q_1} = s + \left( {\frac{{\frac{n}{4} - c{f_{p - 1}}}}{{{n_p}}}} \right).h = 12 + \left( {\frac{{10 - 8}}{{12}}} \right).2 = 12,3\) (km/h).

- Ta có: \(\frac{{3n}}{4} = \frac{{3.40}}{4} = 30\) mà \(29 < 30 < 36.\) Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.

Xét nhóm 4 là nhóm [16 ; 18) có \(t = 16,{\rm{ }}l = 2,{\rm{ }}{n_4} = 7\) và nhóm 3 là nhóm

[14 ; 16) có \(c{f_3} = 29.\)

Tứ phân vị thứ ba của mẫu số liệu là:

\({Q_3} = t + \left( {\frac{{\frac{{3n}}{4} - c{f_{q - 1}}}}{{{n_q}}}} \right).l = 16 + \left( {\frac{{30 - 29}}{7}} \right).2 \approx 16,3\)(km/h).

- Ta thấy: Nhóm 2 ứng với nửa khoảng [12 ; 14) là nhóm có tần số lớn nhất với \(u = 12,{\rm{ }}g = 2,{\rm{ }}{n_2} = 12,{\rm{ }}{n_1} = 8,{\rm{ }}{n_3} = 9.\)

Mốt của mẫu số liệu là:

\({M_0} = u + \left( {\frac{{{n_i} - {n_{i - 1}}}}{{2{n_i} - {n_{i - 1}} - {n_{i + 1}}}}} \right).g = 12 + \left( {\frac{{12 - 8}}{{2.12 - 8 - 9}}} \right).2 \approx 13,1\) (km/h).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 27 trang 21 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 27 trang 21 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 27 trang 21 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học.

Nội dung chi tiết bài 27

Bài 27 bao gồm các dạng bài tập sau:

  • Dạng 1: Tính tích vô hướng của hai vectơ. Bài tập yêu cầu học sinh tính tích vô hướng của hai vectơ cho trước, sử dụng công thức a.b = |a||b|cos(θ), trong đó θ là góc giữa hai vectơ ab.
  • Dạng 2: Xác định góc giữa hai vectơ. Bài tập yêu cầu học sinh xác định góc giữa hai vectơ dựa vào tích vô hướng của chúng.
  • Dạng 3: Ứng dụng tích vô hướng vào hình học. Bài tập yêu cầu học sinh sử dụng tích vô hướng để chứng minh các tính chất hình học, ví dụ như chứng minh hai đường thẳng vuông góc, tính độ dài đường cao trong tam giác, v.v.

Lời giải chi tiết bài 27 trang 21

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 27 trang 21 sách bài tập Toán 11 Cánh Diều:

Câu 1:

Cho hai vectơ ab|a| = 3, |b| = 4 và góc giữa chúng là 60°. Tính a.b.

Lời giải:

a.b = |a||b|cos(60°) = 3 * 4 * 0.5 = 6

Câu 2:

Cho hai vectơ a = (1; 2) và b = (-3; 1). Tính a.b.

Lời giải:

a.b = 1*(-3) + 2*1 = -3 + 2 = -1

Câu 3:

Cho tam giác ABC có AB = 5, AC = 8 và góc BAC = 60°. Tính độ dài BC.

Lời giải:

Áp dụng định lý cosin trong tam giác ABC, ta có:

BC2 = AB2 + AC2 - 2*AB*AC*cos(BAC) = 52 + 82 - 2*5*8*cos(60°) = 25 + 64 - 80*0.5 = 89 - 40 = 49

BC = √49 = 7

Mẹo giải bài tập tích vô hướng

Để giải tốt các bài tập về tích vô hướng, bạn cần nắm vững các công thức và tính chất sau:

  • a.b = b.a
  • (ka).b = k(a.b), với k là một số thực.
  • a.a = |a|2
  • Nếu a.b = 0 thì a vuông góc với b.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về tích vô hướng, bạn có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 11 Cánh Diều và các tài liệu học tập khác. Ngoài ra, bạn cũng có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi để được hướng dẫn chi tiết hơn.

Kết luận

Hy vọng rằng với lời giải chi tiết và các hướng dẫn trên, bạn đã hiểu rõ cách giải bài 27 trang 21 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong các kỳ thi!

Tài liệu, đề thi và đáp án Toán 11