Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 29 trang 100 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và phù hợp với chương trình học Toán 11 hiện hành.
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\)
Đề bài
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), \(ABCD\) là hình thoi cạnh \(a\), \(AC = a\), \(SA = \frac{a}{2}\). Tính số đo của góc nhị diện \(\left[ {S,CD,A} \right]\).
Phương pháp giải - Xem chi tiết
Gọi \(E\) là hình chiếu của \(A\) trên \(CD\). Chứng minh rằng \(\widehat {SEA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {S,CD,A} \right]\), từ đó tính được số đo của góc nhị diện này.
Lời giải chi tiết
Gọi \(E\) là hình chiếu của \(A\) trên \(CD\). Do \(SA \bot \left( {ABCD} \right)\) nên ta suy ra \(SA \bot CD\). Do \(AE \bot CD\) nên ta suy ra \(\left( {SAE} \right) \bot CD\), điều này dẫn tới \(SE \bot CD\).
Như vậy do \(SE \bot CD\), \(AE \bot CD\) nên góc \(\widehat {SEA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {S,CD,A} \right]\).
Tam giác \(ACD\) đều (\(AC = CD = AD = a\)) nên ta suy ra \(AE = \frac{{a\sqrt 3 }}{2}\).
Xét tam giác \(SAE\) vuông tại \(A\), ta có \(\tan \widehat {SEA} = \frac{{SA}}{{AE}} = \frac{{\frac{a}{2}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{\sqrt 3 }}{3}\).
Vậy \(\widehat {SEA} = {30^o}\).
Bài 29 trang 100 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương của các hàm số. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 29 thường bao gồm các dạng bài tập sau:
Để giải bài 29 trang 100 sách bài tập Toán 11 - Cánh Diều hiệu quả, bạn cần:
Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Ví dụ 2: Tìm đạo hàm của hàm số g(x) = sin(x) * cos(x).
Giải:
g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x)) = cos2(x) - sin2(x)
Khi tính đạo hàm, bạn cần chú ý đến các quy tắc ưu tiên của các phép toán. Ví dụ, khi tính đạo hàm của tích hai hàm số, bạn cần sử dụng quy tắc đạo hàm của tích, không phải là đạo hàm của hàm số thứ nhất nhân với đạo hàm của hàm số thứ hai.
Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể tham khảo các bài tập tương tự sau:
Bài 29 trang 100 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và vận dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.
Hàm số | Đạo hàm |
---|---|
y = c (hằng số) | y' = 0 |
y = xn | y' = nxn-1 |
y = sin(x) | y' = cos(x) |
y = cos(x) | y' = -sin(x) |