Logo Header
  1. Môn Toán
  2. Giải bài 9 trang 11 sách bài tập toán 11 - Cánh diều

Giải bài 9 trang 11 sách bài tập toán 11 - Cánh diều

Giải bài 9 trang 11 sách bài tập toán 11 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 9 trang 11 sách bài tập toán 11 - Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy logic và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, chi tiết, kèm theo các bước giải cụ thể để bạn có thể dễ dàng theo dõi và nắm bắt.

Chứng minh rằng:

Đề bài

Chứng minh rằng:

a) \({\sin ^4}x + {\cos ^4}x = 1 - 2{\sin ^2}x{\cos ^2}x\).

b) \({\sin ^6}x + {\cos ^6}x = 1 - 3{\sin ^2}x{\cos ^2}x\).

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 11 sách bài tập toán 11 - Cánh diều 1

a) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = {\sin ^2}x\), \(B = {\cos ^2}x\)

Sử dụng công thức \({\sin ^2}x + {\cos ^2}x = 1\).

b) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + {B^3} + 3AB\left( {A + B} \right)\) với \(A = {\sin ^2}x\), \(B = {\cos ^2}x\); Sử dụng công thức \({\sin ^2}x + {\cos ^2}x = 1\).

Lời giải chi tiết

a) Ta có: \({\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} = {\left( {{{\sin }^2}x} \right)^2} + {\left( {{{\cos }^2}x} \right)^2} + 2{\sin ^2}x{\cos ^2}x\)

\( = {\sin ^4}x + {\cos ^4}x + 2{\sin ^2}x{\cos ^2}x\)

Do \({\sin ^2}x + {\cos ^2}x = 1\), ta suy ra

\({1^2} = {\sin ^4}x + {\cos ^4}x + 2{\sin ^2}x{\cos ^2}x \Rightarrow {\sin ^4}x + {\cos ^4}x = 1 - 2{\sin ^2}x{\cos ^2}x\)

Bài toán được chứng minh.

b) Ta có: \({\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} = {\left( {{{\sin }^2}x} \right)^3} + {\left( {{{\cos }^2}x} \right)^3} + 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\)

\( = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\)

Do \({\sin ^2}x + {\cos ^2}x = 1\), ta suy ra

\(1 = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x \Rightarrow {\sin ^6}x + {\cos ^6}x = 1 - 3{\sin ^2}x{\cos ^2}x\)

Bài toán được chứng minh.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 9 trang 11 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 9 trang 11 sách bài tập toán 11 - Cánh diều: Tổng quan

Bài 9 trang 11 sách bài tập toán 11 - Cánh diều thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách vẽ đồ thị hàm số và giải các bài toán liên quan đến ứng dụng của hàm số lượng giác.

Nội dung bài tập

Bài 9 trang 11 sách bài tập toán 11 - Cánh diều thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số lượng giác: Học sinh cần xác định được khoảng giá trị của x để hàm số có nghĩa.
  • Tìm tập giá trị của hàm số lượng giác: Học sinh cần tìm khoảng giá trị mà hàm số có thể đạt được.
  • Khảo sát sự biến thiên của hàm số lượng giác: Học sinh cần xác định khoảng đồng biến, nghịch biến, cực trị của hàm số.
  • Vẽ đồ thị hàm số lượng giác: Học sinh cần vẽ đồ thị của hàm số dựa trên các tính chất đã khảo sát.
  • Giải phương trình lượng giác: Học sinh cần tìm các giá trị của x thỏa mãn phương trình lượng giác.

Lời giải chi tiết bài 9 trang 11 sách bài tập toán 11 - Cánh diều

Để giúp bạn giải bài 9 trang 11 sách bài tập toán 11 - Cánh diều một cách hiệu quả, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi. Dưới đây là lời giải cho một số câu hỏi thường gặp:

Ví dụ 1: Xác định tập xác định của hàm số y = tan(2x)

Để hàm số y = tan(2x) có nghĩa, điều kiện là cos(2x) ≠ 0. Điều này tương đương với 2x ≠ π/2 + kπ, với k là số nguyên. Suy ra x ≠ π/4 + kπ/2, với k là số nguyên. Vậy tập xác định của hàm số là D = R \ {π/4 + kπ/2, k ∈ Z}.

Ví dụ 2: Tìm tập giá trị của hàm số y = 2sin(x) + 1

Vì -1 ≤ sin(x) ≤ 1, suy ra -2 ≤ 2sin(x) ≤ 2. Do đó, -1 ≤ 2sin(x) + 1 ≤ 3. Vậy tập giá trị của hàm số là [-1, 3].

Ví dụ 3: Khảo sát sự biến thiên của hàm số y = cos(x) trên khoảng (0, π)

Trên khoảng (0, π), hàm số y = cos(x) là hàm số nghịch biến. Hàm số không có cực trị trên khoảng này. Đồ thị của hàm số là một đoạn đường cong đi xuống từ điểm (0, 1) đến điểm (π, -1).

Mẹo giải bài tập hàm số lượng giác

Để giải bài tập hàm số lượng giác một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:

  • Nắm vững định nghĩa và tính chất của các hàm số lượng giác: sin, cos, tan, cot.
  • Sử dụng các công thức lượng giác: Công thức cộng, trừ, nhân, chia góc, công thức hạ bậc, công thức nhân đôi.
  • Vẽ đồ thị hàm số: Đồ thị hàm số giúp bạn hình dung được sự biến thiên của hàm số và tìm ra lời giải.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp bạn nắm vững kiến thức và kỹ năng giải bài tập.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về hàm số lượng giác, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa toán 11 - Cánh diều
  • Sách bài tập toán 11 - Cánh diều
  • Các trang web học toán online uy tín
  • Các video bài giảng về hàm số lượng giác

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 9 trang 11 sách bài tập toán 11 - Cánh diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11