Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 44 trang 23 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 44 trang 23 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
Đề bài
Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
a) \(y = \sin x\) trên khoảng \(\left( { - \frac{{19\pi }}{2}; - \frac{{17\pi }}{2}} \right)\); \(\left( { - \frac{{13\pi }}{2}; - \frac{{11\pi }}{2}} \right)\)
b) \(y = \cos x\) trên khoảng \(\left( {19\pi ;20\pi } \right)\); \(\left( { - 30\pi ; - 29\pi } \right)\)
Phương pháp giải - Xem chi tiết
Với \(k \in \mathbb{Z}\), ta có:
+ Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\).
+ Hàm số \(y = \cos x\) đồng biến trên mỗi khoảng \(\left( { - \pi + k2\pi ;k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi + k2\pi } \right)\).
Chọn các giá trị \(k\) phù hợp.
Lời giải chi tiết
Với \(k \in \mathbb{Z}\), ta có:
+ Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\).
+ Hàm số \(y = \cos x\) đồng biến trên mỗi khoảng \(\left( { - \pi + k2\pi ;k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi + k2\pi } \right)\).
Chọn \(k = - 5\), ta có hàm số \(y = \sin x\) nghịch biến trên khoảng \(\left( { - \frac{{19\pi }}{2}; - \frac{{17\pi }}{2}} \right)\).
Chọn \(k = - 3\), ta có hàm số \(y = \sin x\) đồng biến trên khoảng \(\left( { - \frac{{13\pi }}{2}; - \frac{{11\pi }}{2}} \right)\).
Chọn \(k = 10\), ta có hàm số \(y = \cos x\) đồng biến trên khoảng \(\left( {19\pi ;20\pi } \right)\).
Chọn \(k = - 15\), ta có hàm số \(y = \cos x\) nghịch biến trên khoảng \(\left( { - 30\pi ; - 29\pi } \right)\).
Bài 44 trang 23 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đồ thị hàm số lượng giác, tính chất của hàm số, và các phép biến đổi đồ thị để giải quyết các bài toán cụ thể.
Bài 44 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 44 trang 23, chúng tôi sẽ trình bày chi tiết lời giải cho từng câu hỏi trong bài tập. Chúng tôi sẽ phân tích từng bước giải, giải thích rõ ràng các khái niệm và công thức được sử dụng, và đưa ra các ví dụ minh họa cụ thể.
Giả sử bài 44 yêu cầu vẽ đồ thị hàm số y = sin(2x). Để vẽ đồ thị này, ta cần xác định:
Sau khi xác định các yếu tố này, ta có thể vẽ đồ thị hàm số y = sin(2x) bằng cách sử dụng các điểm đặc biệt và các phép biến đổi đồ thị.
Để đạt được kết quả tốt nhất khi giải bài 44 trang 23, bạn cần lưu ý những điều sau:
Việc giải bài tập Toán 11 chương trình Cánh Diều không chỉ giúp bạn củng cố kiến thức và kỹ năng giải toán, mà còn là bước chuẩn bị quan trọng cho các kỳ thi sắp tới. Toán 11 là môn học nền tảng cho các môn học khác trong chương trình THPT, đặc biệt là Toán 12. Vì vậy, việc học tốt Toán 11 sẽ giúp bạn tự tin hơn khi học các môn học khác và đạt được kết quả tốt trong các kỳ thi quan trọng.
Giaitoan.edu.vn cam kết cung cấp cho bạn những lời giải bài tập Toán 11 chính xác, dễ hiểu, và đầy đủ. Chúng tôi luôn cập nhật những kiến thức mới nhất và phương pháp giải bài tập hiệu quả nhất để giúp bạn học Toán 11 một cách tốt nhất. Hãy truy cập giaitoan.edu.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác!